57 research outputs found

    Two Group A Streptococcal Peptide Pheromones Act through Opposing Rgg Regulators to Control Biofilm Development

    Get PDF
    Streptococcus pyogenes (Group A Streptococcus, GAS) is an important human commensal that occasionally causes localized infections and less frequently causes severe invasive disease with high mortality rates. How GAS regulates expression of factors used to colonize the host and avoid immune responses remains poorly understood. Intercellular communication is an important means by which bacteria coordinate gene expression to defend against host assaults and competing bacteria, yet no conserved cell-to-cell signaling system has been elucidated in GAS. Encoded within the GAS genome are four rgg-like genes, two of which (rgg2 and rgg3) have no previously described function. We tested the hypothesis that rgg2 or rgg3 rely on extracellular peptides to control target-gene regulation. We found that Rgg2 and Rgg3 together tightly regulate two linked genes encoding new peptide pheromones. Rgg2 activates transcription of and is required for full induction of the pheromone genes, while Rgg3 plays an antagonistic role and represses pheromone expression. The active pheromone signals, termed SHP2 and SHP3, are short and hydrophobic (DI[I/L]IIVGG), and, though highly similar in sequence, their ability to disrupt Rgg3-DNA complexes were observed to be different, indicating that specificity and differential activation of promoters are characteristics of the Rgg2/3 regulatory circuit. SHP-pheromone signaling requires an intact oligopeptide permease (opp) and a metalloprotease (eep), supporting the model that pro-peptides are secreted, processed to the mature form, and subsequently imported to the cytoplasm to interact directly with the Rgg receptors. At least one consequence of pheromone stimulation of the Rgg2/3 pathway is increased biogenesis of biofilms, which counteracts negative regulation of biofilms by RopB (Rgg1). These data provide the first demonstration that Rgg-dependent quorum sensing functions in GAS and substantiate the role that Rggs play as peptide receptors across the Firmicute phylum

    A Rhizobiales-Specific Unipolar Polysaccharide Adhesin Contributes to Rhodopseudomonas palustris Biofilm Formation across Diverse Photoheterotrophic Conditions

    No full text
    Bacteria predominantly exist as members of surfaced-attached communities known as biofilms. Many bacterial species initiate biofilms and adhere to each other using cell surface adhesins. This is the case for numerous ecologically diverse Alphaprotebacteria, which use polar exopolysaccharide adhesins for cell-cell adhesion and surface attachment. Here, we show that Rhodopseudomonas palustris, a metabolically versatile member of the alphaproteobacterial order Rhizobiales, contains a functional unipolar polysaccharide (UPP) biosynthesis gene cluster. Deletion of genes predicted to be critical for UPP biosynthesis and export abolished UPP production. We also found that R. palustris uses UPP to mediate biofilm formation across diverse photoheterotrophic growth conditions, wherein light and organic substrates are used to support growth. However, UPP was less important for biofilm formation during photoautotrophy, where light and CO2_2 support growth, and during aerobic respiration with organic compounds. Expanding our analysis beyond R. palustris, we examined the phylogenetic distribution and genomic organization of UPP gene clusters among Rhizobiales species that inhabit diverse niches. Our analysis suggests that UPP is a conserved ancestral trait of the Rhizobiales but that it has been independently lost multiple times during the evolution of this clade, twice coinciding with adaptation to intracellular lifestyles within animal hosts

    Restricted Localization of Photosynthetic Intracytoplasmic Membranes (ICMs) in Multiple Genera of Purple Nonsulfur Bacteria

    No full text
    In bacteria and eukaryotes alike, proper cellular physiology relies on robust subcellular organization. For the phototrophic purple nonsulfur bacteria (PNSB), this organization entails the use of a light-harvesting, membrane-bound compartment known as the intracytoplasmic membrane (ICM). Here we show that ICMs are spatially and temporally localized in diverse patterns among PNSB. We visualized ICMs in live cells of 14 PNSB species across nine genera by exploiting the natural autofluorescence of the photosynthetic pigment bacteriochlorophyll (BChl). We then quantitatively characterized ICM localization using automated computational analysis of BChl fluorescence patterns within single cells across the population. We revealed that while many PNSB elaborate ICMs along the entirety of the cell, species across as least two genera restrict ICMs to discrete, nonrandom sites near cell poles in a manner coordinated with cell growth and division. Phylogenetic and phenotypic comparisons established that ICM localization and ICM architecture are not strictly interdependent and that neither trait fully correlates with the evolutionary relatedness of the species. The natural diversity of ICM localization revealed herein has implications for both the evolution of phototrophic organisms and their light-harvesting compartments and the mechanisms underpinning spatial organization of bacterial compartments.Many bacteria organize their cellular space by constructing subcellular compartments that are arranged in specific, physiologically relevant patterns. The purple nonsulfur bacteria (PNSB) utilize a membrane-bound compartment known as the intracytoplasmic membrane (ICM) to harvest light for photosynthesis. It was previously unknown whether ICM localization within cells is systematic or irregular and if ICM localization is conserved among PNSB. Here we surveyed ICM localization in diverse PNSB and show that ICMs are spatially organized in species-specific patterns. Most strikingly, several PNSB resolutely restrict ICMs to regions near the cell poles, leaving much of the cell devoid of light-harvesting machinery. Our results demonstrate that bacteria of a common lifestyle utilize unequal portions of their intracellular space to harvest light, despite light harvesting being a process that is intuitively influenced by surface area. Our findings therefore raise fundamental questions about ICM biology and evolution
    • …
    corecore