167 research outputs found

    Microstructure and hardness performance of AA6061 aluminium composite using friction stir processing

    Get PDF
    Rice husk ash (RHA) is an industrial waste that has become a potential reinforced material for aluminium matrix composite (AMCs) due to low cost and abundantly available resources. Friction stir processing (FSP) has been introduced as a method to modify surface properties of the metal and alloy including theirs composite as well. The present work reports the production and characterization of AA6061 and AA6061/5 vol% RHA using FSP using parameters rotation speed 1000 rpm and traversed speed 25 mm/min. The microstructure was studied using optical microscopy (OM). A homogenous dispersion of RHA particles was obtained in the composite. No agglomeration or segregation was observed. The produced composite exhibited a fine grain structure. An improvement in hardness profile was observed as AA6061/5 vol% RHA improves in hardness compared to FSPed of AA6061 without reinforcement

    UBE3A: An E3 Ubiquitin Ligase With Genome-Wide Impact in Neurodevelopmental Disease

    Get PDF
    UBE3A is an E3 ubiquitin ligase encoded by an imprinted gene whose maternal deletion or duplication leads to distinct neurodevelopment disorders Angelman and Dup15q syndromes. Despite the known genetic basis of disease, how changes in copy number of a ubiquitin ligase gene can have widespread impact in early brain development is poorly understood. Previous studies have identified a wide array of UBE3A functions, interaction partners, and ubiquitin targets, but no central pathway fully explains its critical role in neurodevelopment. Here, we review recent UBE3A studies that have begun to investigate mechanistic, cellular pathways and the genome-wide impacts of alterations in UBE3A expression levels to gain broader insight into how UBE3A affects the developing brain. These studies have revealed that UBE3A is a multifunctional protein with important nuclear and cytoplasmic regulatory functions that impact proteasome function, Wnt signaling, circadian rhythms, imprinted gene networks, and chromatin. Synaptic functions of UBE3A interact with light exposures and mTOR signaling and are most critical in GABAergic neurons. Understanding the genome-wide influences of UBE3A will help uncover its role in early brain development and ultimately lead to identification of key therapeutic targets for UBE3A-related neurodevelopmental disorders

    Increased copy number for methylated maternal 15q duplications leads to changes in gene and protein expression in human cortical samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duplication of chromosome 15q11-q13 (dup15q) accounts for approximately 3% of autism cases. Chromosome 15q11-q13 contains imprinted genes necessary for normal mammalian neurodevelopment controlled by a differentially methylated imprinting center (imprinting center of the Prader-Willi locus, PWS-IC). Maternal dup15q occurs as both interstitial duplications and isodicentric chromosome 15. Overexpression of the maternally expressed gene <it>UBE3A </it>is predicted to be the primary cause of the autistic features associated with dup15q. Previous analysis of two postmortem dup15q frontal cortical samples showed heterogeneity between the two cases, with one showing levels of the GABA<sub>A </sub>receptor genes, <it>UBE3A </it>and <it>SNRPN </it>in a manner not predicted by copy number or parental imprint.</p> <p>Methods</p> <p>Postmortem human brain tissue (Brodmann area 19, extrastriate visual cortex) was obtained from 8 dup15q, 10 idiopathic autism and 21 typical control tissue samples. Quantitative PCR was used to confirm duplication status. Quantitative RT-PCR and Western blot analyses were performed to measure 15q11-q13 transcript and protein levels, respectively. Methylation-sensitive high-resolution melting-curve analysis was performed on brain genomic DNA to identify the maternal:paternal ratio of methylation at PWS-IC.</p> <p>Results</p> <p>Dup15q brain samples showed a higher level of PWS-IC methylation than control or autism samples, indicating that dup15q was maternal in origin. <it>UBE3A </it>transcript and protein levels were significantly higher than control and autism in dup15q, as expected, although levels were variable and lower than expected based on copy number in some samples. In contrast, this increase in copy number did not result in consistently increased <it>GABRB3 </it>transcript or protein levels for dup15q samples. Furthermore, <it>SNRPN </it>was expected to be unchanged in expression in dup15q because it is expressed from the single unmethylated paternal allele, yet <it>SNRPN </it>levels were significantly reduced in dup15q samples compared to controls. PWS-IC methylation positively correlated with <it>UBE3A </it>and <it>GABRB3 </it>levels but negatively correlated with <it>SNRPN </it>levels. Idiopathic autism samples exhibited significantly lower <it>GABRB3 </it>and significantly more variable <it>SNRPN </it>levels compared to controls.</p> <p>Conclusions</p> <p>Although these results show that increased <it>UBE3A</it>/UBE3A is a consistent feature of dup15q syndrome, they also suggest that gene expression within 15q11-q13 is not based entirely on copy number but can be influenced by epigenetic mechanisms in brain.</p

    Self-reported pregnancy exposures and placental DNA methylation in the MARBLES prospective autism sibling study.

    Get PDF
    Human placenta is a fetal-derived tissue that offers a unique sample of epigenetic and environmental exposures present in utero. In the MARBLES prospective pregnancy study of high-risk younger siblings of children with autism spectrum disorder (ASD), pregnancy and environmental factors collected by maternal interviews were examined as predictors of placental DNA methylation, including partially methylated domains (PMDs), an embryonic feature of the placental methylome. DNA methylation data from MethylC-seq analysis of 47 placentas of children clinically diagnosed at 3 years with ASD or typical development using standardized assessments were examined in relation to: child's gestational age, birth-weight, and diagnosis; maternal pre-pregnancy body mass index, smoking, education, parity, height, prenatal vitamin and folate intake; home ownership; pesticides professionally applied to lawns or gardens or inside homes, pet flea/tick pouches, collars, or soaps/shampoos used in the 3 months prior to or during pregnancy. Sequencing run, order, and coverage, and child race and sex were considered as potential confounders. Akaike information criterion was used to select the most parsimonious among candidate models. Final prediction models used sandwich estimators to produce homoscadisticity-robust estimates of the 95% confidence interval (CI) and P-values controlled the false discovery rate at 5%. The strongest, most robust associations were between pesticides professionally applied outside the home and higher average methylation over PMDs [0.45 (95% CI 0.17, 0.72), P = 0.03] and a reduced proportion of the genome in PMDs [-0.42 (95% CI - 0.67 to -0.17), P = 0.03]. Pesticide exposures could alter placental DNA methylation more than other factors
    • …
    corecore