26 research outputs found

    Assay for Glycosaminoglycans by Tandem Mass Spectrometry and its Applications

    Get PDF
    Glycosaminoglycans (GAGs) are distributed in the whole body and play a variety of important physiological roles associated with inflammation, growth, coagulation, fibrinolysis, lipolysis, and cell-matrix biology. Accumulation of undegraded GAGs in lysosomes gives rise to a distinct clinical syndrome, mucopolysaccharidoses. Measurement of each specific GAG in a variety of specimens is urgently required to understand GAG interaction with other molecules, physiological status of patients, and prognosis and pathogenesis of the disease. We established a highly sensitive and accurate tandem mass spectrometry (LC-MS/MS) method for measurements of disaccharides derived from four specific GAGs [dermatan sulfate (DS), heparan sulfate (HS), keratan sulfate (KS), and chondroitin sulfate (CS)]. Disaccharides were produced by specific enzyme digestion of each GAG, and quantified by negative ion mode of multiple reaction monitoring. Subclasses of HS and GAGs with identical molecular weights can be separated using a Hypercarbcolumn (2.0 mm×50 mm, 5 μm) with an aectonitrile gradient in ammonium acetate (pH 11.0). We also developed a GAG assay by RapidFire with tandem mass spectrometry (RF-MS/MS). The RF system consists of an integrated solid phase extraction robot that binds and de-salts samples from assay plates and directly injects them into a MS/MS detector, reducing sample processing time to ten seconds. RF-MS/MS consequently yields much faster throughput than conventional LC-MS/MS-based methods. However, the RF system does not have a chromatographic step, and therefore, cannot distinguish GAGs that have identical molecular weights. Both methods can be applied to analysis of dried blood spots, blood, and urine specimens. In this article, we compare the assay methods for GAGs and describe their potential applications

    Quantification of the 2-Deoxyribonolactone and Nucleoside 5 '-Aldehyde Products of 2-Deoxyribose Oxidation in DNA and Cells by Isotope-Dilution Gas Chromatography Mass Spectrometry: Differential Effects of gamma-Radiation and Fe2+-EDTA

    Get PDF
    The oxidation of 2-deoxyribose in DNA has emerged as a critical determinant of the cellular toxicity of oxidative damage to DNA, with oxidation of each carbon producing a unique spectrum of electrophilic products. We have developed and validated an isotope-dilution gas chromatography-coupled mass spectrometry (GC−MS) method for the rigorous quantification of two major 2-deoxyribose oxidation products: the 2-deoxyribonolactone abasic site of 1′-oxidation and the nucleoside 5′-aldehyde of 5′-oxidation chemistry. The method entails elimination of these products as 5-methylene-2(5H)-furanone (5MF) and furfural, respectively, followed by derivatization with pentafluorophenylhydrazine (PFPH), addition of isotopically labeled PFPH derivatives as internal standards, extraction of the derivatives, and quantification by GC−MS analysis. The precision and accuracy of the method were validated with oligodeoxynucleotides containing the 2-deoxyribonolactone and nucleoside 5′-aldehyde lesions. Further, the well-defined 2-deoxyribose oxidation chemistry of the enediyne antibiotics, neocarzinostatin and calicheamicin γ1I, was exploited in control studies, with neocarzinostatin producing 10 2-deoxyribonolactone and 300 nucleoside 5′-aldehyde per 106 nt per μM in accord with its established minor 1′- and major 5′-oxidation chemistry. Calicheamicin unexpectedly caused 1′-oxidation at a low level of 10 2-deoxyribonolactone per 106 nt per μM in addition to the expected predominance of 5′-oxidation at 560 nucleoside 5′-aldehyde per 106 nt per μM. The two hydroxyl radical-mediated DNA oxidants, γ-radiation and Fe2+−EDTA, produced nucleoside 5′-aldehyde at a frequency of 57 per 106 nt per Gy (G-value 74 nmol/J) and 3.5 per 106 nt per μM, respectively, which amounted to 40% and 35%, respectively, of total 2-deoxyribose oxidation as measured by a plasmid nicking assay. However, γ-radiation and Fe2+−EDTA produced different proportions of 2-deoxyribonolactone at 7% and 24% of total 2-deoxyribose oxidation, respectively, with frequencies of 10 lesions per 106 nt per Gy (G-value, 13 nmol/J) and 2.4 lesions per 106 nt per μM. Studies in TK6 human lymphoblastoid cells, in which the analytical data were corrected for losses sustained during DNA isolation, revealed background levels of 2-deoxyribonolactone and nucleoside 5′-aldehyde of 9.7 and 73 lesions per 106 nt, respectively. γ-Irradiation of the cells caused increases of 0.045 and 0.22 lesions per 106 nt per Gy, respectively, which represents a 250-fold quenching effect of the cellular environment similar to that observed in previous studies. The proportions of the various 2-deoxyribose oxidation products generated by γ-radiation are similar for purified DNA and cells. These results are consistent with solvent exposure as a major determinant of hydroxyl radical reactivity with 2-deoxyribose in DNA, but the large differences between γ-radiation and Fe2+−EDTA suggest that factors other than hydroxyl radical reactivity govern DNA oxidation chemistry.National Institute of Environmental Health Sciences (ES002109)National Center for Research Resources (U.S.) (RR023783-01)National Center for Research Resources (U.S.) (RR017905-01)National Cancer Institute (U.S.) (CA103146

    Establishment of glycosaminoglycan assays for mucopolysaccharidoses

    Get PDF
    Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by deficiency of the lysosomal enzymes essential for catabolism of glycosaminoglycans (GAGs). Accumulation of undegraded GAGs results in dysfunction of multiple organs, resulting in distinct clinical manifestations. A range of methods have been developed to measure specific GAGs in various human samples to investigate diagnosis, prognosis, pathogenesis, GAG interaction with other molecules, and monitoring therapeutic efficacy. We established ELISA, liquid chromatography tandem mass spectrometry (LC-MS/MS), and an automated high-throughput mass spectrometry (HT-MS/MS) system (RapidFire) to identify epitopes (ELISA) or disaccharides (MS/MS) derived from different GAGs (dermatan sulfate, heparan sulfate, keratan sulfate, and/or chondroitin sulfate). These methods have a high sensitivity and specificity in GAG analysis, applicable to the analysis of blood, urine, tissues, and cells. ELISA is feasible, sensitive, and reproducible with the standard equipment. HT-MS/MS yields higher throughput than conventional LC-MS/MS-based methods while the HT-MS/MS system does not have a chromatographic step and cannot distinguish GAGs with identical molecular weights, leading to a limitation of measurements for some specific GAGs. Here we review the advantages and disadvantages of these methods for measuring GAG levels in biological specimens. We also describe an unexpected secondary elevation of keratan sulfate in patients with MPS that is an indirect consequence of disruption of catabolism of other GAGs

    The Neutron star Interior Composition Explorer (NICER): design and development

    Get PDF

    Adaptations to Submarine Hydrothermal Environments Exemplified by the Genome of Nautilia profundicola

    Get PDF
    Submarine hydrothermal vents are model systems for the Archaean Earth environment, and some sites maintain conditions that may have favored the formation and evolution of cellular life. Vents are typified by rapid fluctuations in temperature and redox potential that impose a strong selective pressure on resident microbial communities. Nautilia profundicola strain Am-H is a moderately thermophilic, deeply-branching Epsilonproteobacterium found free-living at hydrothermal vents and is a member of the microbial mass on the dorsal surface of vent polychaete, Alvinella pompejana. Analysis of the 1.7-Mbp genome of N. profundicola uncovered adaptations to the vent environment—some unique and some shared with other Epsilonproteobacterial genomes. The major findings included: (1) a diverse suite of hydrogenases coupled to a relatively simple electron transport chain, (2) numerous stress response systems, (3) a novel predicted nitrate assimilation pathway with hydroxylamine as a key intermediate, and (4) a gene (rgy) encoding the hallmark protein for hyperthermophilic growth, reverse gyrase. Additional experiments indicated that expression of rgy in strain Am-H was induced over 100-fold with a 20°C increase above the optimal growth temperature of this bacterium and that closely related rgy genes are present and expressed in bacterial communities residing in geographically distinct thermophilic environments. N. profundicola, therefore, is a model Epsilonproteobacterium that contains all the genes necessary for life in the extreme conditions widely believed to reflect those in the Archaean biosphere—anaerobic, sulfur, H2- and CO2-rich, with fluctuating redox potentials and temperatures. In addition, reverse gyrase appears to be an important and common adaptation for mesophiles and moderate thermophiles that inhabit ecological niches characterized by rapid and frequent temperature fluctuations and, as such, can no longer be considered a unique feature of hyperthermophiles
    corecore