56 research outputs found

    Unsteady transonic heat transfer in a transient facility

    Get PDF
    A facility for making heat transfer measurements on solid surfaces using transient techniques is constructed. The facility being constructed is a Ludweig tube with isentropic compression heating (LICH tube). The work completed is detailed as is the work remaining in order to complete the facility and make useful heat transfer measurements. The scope of the project is briefly discussed along with an overall appraisal of the progress

    Unsteady heat transfer and direct comparison to steady-state measurements in a rotor-wake experiment

    Get PDF
    Circumferentially local and time-resolved heat transfer measurements were obtained for a circular cylinder in crossflow located downstream of a rotating spoked wheel wake generator in a steady flow tunnel. The unsteady heat transfer effects were obtained by developing an extension of a thin film gauge technique employed to date exclusively in short-duration facilities. The time-average thin film results and conventional steady-state heat transfer measurements were compared. Time-averaged wake-induced stagnation heat transfer enhancement levels above the nowake case were about 10% for the four cylinder Reynolds numbers. This enhancement level was nearly independent of bar passing frequency and was related directly to the time integral of the heat transfer spikes observed at the bar passing frequency. It is observed that the wake-induced heat transfer spikes have peak magnitudes averaging 30 to 40% above the interwake heat transfer level

    Turbulent-Spot Growth Characteristics: Wind-Tunnel and Flight Measurements of Natural Transition at High Reynolds and Mach Numbers

    Get PDF
    A series of experiments are described which examine the growth of turbulent spots on a flat plate at Reynolds and Mach numbers typical of gas-turbine blading. A short-duration piston tunnel is employed and rapid-response miniature surface-heat-transfer gauges are used to asses the state of the boundary layer. The leading- and trailing-edge velocities of spots are reported for different external pressure gradients and Mach numbers. Also, the lateral spreading angle is determined from the heat-transfer signals which demonstrate dramatically the reduction in spot growth associated with favorable pressure gradients. An associated experiment on the development of turbulent wedges is also reported where liquid-crystal heat-transfer techniques are employed in low-speed wind tunnel to visualize and measure the wedge characteristics. Finally, both liquid crystal techniques and hot-film measurements from flight tests at Mach number of 0.6 are presented

    Fast Domain Growth through Density-Dependent Diffusion in a Driven Lattice Gas

    Full text link
    We study electromigration in a driven diffusive lattice gas (DDLG) whose continuous Monte Carlo dynamics generate higher particle mobility in areas with lower particle density. At low vacancy concentrations and low temperatures, vacancy domains tend to be faceted: the external driving force causes large domains to move much more quickly than small ones, producing exponential domain growth. At higher vacancy concentrations and temperatures, even small domains have rough boundaries: velocity differences between domains are smaller, and modest simulation times produce an average domain length scale which roughly follows LtζL \sim t^{\zeta}, where ζ\zeta varies from near .55 at 50% filling to near .75 at 70% filling. This growth is faster than the t1/3t^{1/3} behavior of a standard conserved order parameter Ising model. Some runs may be approaching a scaling regime. At low fields and early times, fast growth is delayed until the characteristic domain size reaches a crossover length which follows LcrossEβL_{cross} \propto E^{-\beta}. Rough numerical estimates give β=>.37\beta= >.37 and simple theoretical arguments give β=1/3\beta= 1/3. Our conclusion that small driving forces can significantly enhance coarsening may be relevant to the YB2_2Cu3_3O7δ_{7- \delta} electromigration experiments of Moeckly {\it et al.}(Appl. Phys. Let., {\bf 64}, 1427 (1994)).Comment: 18 pages, RevTex3.

    Minnowbrook V: 2006 Workshop on Unsteady Flows in Turbomachinery

    Get PDF
    This volume contains materials presented at the Minnowbrook V 2006 Workshop on Unsteady Flows in Turbomachinery, held at the Syracuse University Minnowbrook Conference Center, New York, on August 20-23, 2006. The workshop organizers were John E. LaGraff (Syracuse University), Martin L.G. Oldfield (Oxford University), and J. Paul Gostelow (University of Leicester). The workshop followed the theme, venue, and informal format of four earlier workshops: Minnowbrook I (1993), Minnowbrook II (1997), Minnowbrook III (2000), and Minnowbrook IV (2003). The workshop was focused on physical understanding of unsteady flows in turbomachinery, with the specific goal of contributing to engineering application of improving design codes for turbomachinery. The workshop participants included academic researchers from the United States and abroad and representatives from the gas-turbine industry and U.S. Government laboratories. The physical mechanisms discussed were related to unsteady wakes, active flow control, turbulence, bypass and natural transition, separation bubbles and turbulent spots, modeling of turbulence and transition, heat transfer and cooling, surface roughness, unsteady CFD, and DNS. The workshop summary and the plenary discussion transcripts clearly highlight the need for continued vigorous research in the technologically important area of unsteady flows in turbomachines. This volume contains abstracts and copies of select viewgraphs organized according to the workshop sessions. Full-color viewgraphs and animations are included in the CD-ROM version only (Doc.ID 20070024781)

    The Batten Disease Palmitoyl Protein Thioesterase 1 Gene Regulates Neural Specification and Axon Connectivity during Drosophila Embryonic Development

    Get PDF
    Palmitoyl Protein Thioesterase 1 (PPT1) is an essential lysosomal protein in the mammalian nervous system whereby defects result in a fatal pediatric disease called Infantile Neuronal Ceroids Lipofuscinosis (INCL). Flies bearing mutations in the Drosophila ortholog Ppt1 exhibit phenotypes similar to the human disease: accumulation of autofluorescence deposits and shortened adult lifespan. Since INCL patients die as young children, early developmental neural defects due to the loss of PPT1 are postulated but have yet to be elucidated. Here we show that Drosophila Ppt1 is required during embryonic neural development. Ppt1 embryos display numerous neural defects ranging from abnormal cell fate specification in a number of identified precursor lineages in the CNS, missing and disorganized neurons, faulty motoneuronal axon trajectory, and discontinuous, misaligned, and incorrect midline crossings of the longitudinal axon bundles of the ventral nerve cord. Defects in the PNS include a decreased number of sensory neurons, disorganized chordotonal neural clusters, and abnormally shaped neurons with aberrant dendritic projections. These results indicate that Ppt1 is essential for proper neuronal cell fates and organization; and to establish the local environment for proper axon guidance and fasciculation. Ppt1 function is well conserved from humans to flies; thus the INCL pathologies may be due, in part, to the accumulation of various embryonic neural defects similar to that of Drosophila. These findings may be relevant for understanding the developmental origin of neural deficiencies in INCL

    Fabrication and Imaging of Protein Crossover Structures

    Get PDF
    ABSTRACT Proteins often deform, dehydrate or otherwise denature when adsorbed or patterned directly onto an inorganic substrate, thus losing specificity and biofunctionality. One method used to maintain function is to pattern the protein of interest directly onto another underlying protein or polypeptide that acts as a buffer layer between the substrate and the desired protein. We have used microcontact printing (µcp) to cross-stamp orthogonal linear arrays of two different proteins (e.g., IgG, poly-lysine, protein A) onto glass substrates. This created three separate types of protein-substrate microenvironments, including crossover structures of protein one on protein two. We report preliminary fluorescent microscopy and scanning force microscopy characterization of these structures, including commonly encountered structural defects

    External and Turbomachinery Flow Control Working Group

    Get PDF
    Broad Flow Control Issues: a) Understanding flow physics. b) Specific control objective(s). c) Actuation. d) Sensors. e) Integrated active flow control system. f) Development of design tools (CFD, reduced order models, controller design, understanding and utilizing instabilities and other mechanisms, e.g., streamwise vorticity)

    Wake-induced unsteady stagnation-region heat transfer measurements

    No full text
    An experimental investigation of wake-induced unsteady heat transfer in the sta
    corecore