3,615 research outputs found
Optical characterization of BiSe in a magnetic field: infrared evidence for magnetoelectric coupling in a topological insulator material
We present an infrared magneto-optical study of the highly thermoelectric
narrow-gap semiconductor BiSe. Far-infrared and mid-infrared (IR)
reflectance and transmission measurements have been performed in magnetic
fields oriented both parallel and perpendicular to the trigonal axis of
this layered material, and supplemented with UV-visible ellipsometry to obtain
the optical conductivity . With lowering of temperature we
observe narrowing of the Drude conductivity due to reduced quasiparticle
scattering, as well as the increase in the absorption edge due to direct
electronic transitions. Magnetic fields dramatically
renormalize and asymmetrically broaden the strongest far-IR optical phonon,
indicating interaction of the phonon with the continuum free-carrier spectrum
and significant magnetoelectric coupling. For the perpendicular field
orientation, electronic absorption is enhanced, and the plasma edge is slightly
shifted to higher energies. In both cases the direct transition energy is
softened in magnetic field.Comment: Final versio
Two-Stage Rotational Disordering of a Molecular Crystal Surface: C\u3csub\u3e60\u3c/sub\u3e
We propose a two-stage mechanism for the rotational surface disordering phase transition of a molecular crystal, as realized in C60 fullerite. Our study, based on Monte Carlo simulations, uncovers the existence of a new intermediate regime, between a low-temperature ordered (2×2) state, and a high-temperature (1×1) disordered phase. In the intermediate regime there is partial disorder, strongest for a subset of particularly frustrated surface molecules. These concepts and calculations provide a coherent understanding of experimental observations, with possible extension to other molecular crystal surfaces
Phonon splitting and anomalous enhancement of infrared-active modes in BaFeAs
We present a comprehensive infrared spectroscopic study of lattice dynamics
in the pnictide parent compound BaFeAs. In the tetragonal structural
phase, we observe the two degenerate symmetry-allowed in-plane infrared active
phonon modes. Following the structural transition from the tetragonal to
orthorhombic phase, we observe splitting into four non-degenerate phonon modes
and a significant phonon strength enhancement. These detailed data allow us to
provide a physical explanation for the anomalous phonon strength enhancement as
the result of anisotropic conductivity due to Hund's coupling.Comment: 5 pages, 3 figures, 1 tabl
Fabrication and Characterization of Topological Insulator BiSe Nanocrystals
In the recently discovered class of materials known as topological
insulators, the presence of strong spin-orbit coupling causes certain
topological invariants in the bulk to differ from their values in vacuum. The
sudden change of invariants at the interface results in metallic, time reversal
invariant surface states whose properties are useful for applications in
spintronics and quantum computation. However, a key challenge is to fabricate
these materials on the nanoscale appropriate for devices and probing the
surface. To this end we have produced 2 nm thick nanocrystals of the
topological insulator BiSe via mechanical exfoliation. For crystals
thinner than 10 nm we observe the emergence of an additional mode in the Raman
spectrum. The emergent mode intensity together with the other results presented
here provide a recipe for production and thickness characterization of
BiSe nanocrystals.Comment: 4 pages, 3 figures (accepted for publication in Applied Physics
Letters
Real-time dynamics of the formation of hydrated electrons upon irradiation of water clusters with extreme ultraviolet light
Free electrons in a polar liquid can form a bound state via interaction with the molecular environment. This so-called hydrated electron state in water is of fundamental importance e.g.~in cellular biology or radiation chemistry. Hydrated electrons are highly reactive radicals that can either directly interact with DNA or enzymes, or form highly excited hydrogen (H∗) after being captured by protons. Here, we investigate the formation of the hydrated electron in real-time employing XUV femtosecond pulses from a free electron laser, in this way observing the initial steps of the hydration process. Using time-resolved photoelectron spectroscopy we find formation timescales in the low picosecond range and resolve the prominent dynamics of forming excited hydrogen states
Highly efficient double ionization of mixed alkali dimers by intermolecular Coulombic decay
As opposed to purely molecular systems where electron dynamics proceed only
through intramolecular processes, weakly bound complexes such as He droplets
offer an environment where local excitations can interact with neighbouring
embedded molecules leading to new intermolecular relaxation mechanisms. Here,
we report on a new decay mechanism leading to the double ionization of alkali
dimers attached to He droplets by intermolecular energy transfer. From the
electron spectra, the process is similar to the well-known shake-off mechanism
observed in double Auger decay and single-photon double ionization, however, in
this case, the process is dominant, occurring with efficiencies equal to, or
greater than, single ionization by energy transfer. Although an alkali dimer
attached to a He droplet is a model case, the decay mechanism is relevant for
any system where the excitation energy of one constituent exceeds the double
ionization potential of another neighbouring molecule. The process is, in
particular, relevant for biological systems, where radicals and slow electrons
are known to cause radiation damageComment: accepted as Nature Physic
Collective Autoionization in Multiply-Excited Systems: A novel ionization process observed in Helium Nanodroplets
Free electron lasers (FELs) offer the unprecedented capability to study
reaction dynamics and image the structure of complex systems. When multiple
photons are absorbed in complex systems, a plasma-like state is formed where
many atoms are ionized on a femtosecond timescale. If multiphoton absorption is
resonantly-enhanced, the system becomes electronically-excited prior to plasma
formation, with subsequent decay paths which have been scarcely investigated to
date. Here, we show using helium nanodroplets as an example that these systems
can decay by a new type of process, named collective autoionization. In
addition, we show that this process is surprisingly efficient, leading to ion
abundances much greater than that of direct single-photon ionization. This
novel collective ionization process is expected to be important in many other
complex systems, e.g. macromolecules and nanoparticles, exposed to high
intensity radiation fields
Effect of Projectile Coherence on Atomic Fragmentation Processes
We demonstrate that the projectile coherence can have a major impact on atomic fragmentation processes. This has been overlooked for decades in formal scattering theory and may explain puzzling discrepancies between theoretical and experimental fully differential cross sections for single ionization
Matter-gravity interaction in a multiply warped braneworld,
The role of a bulk graviton in predicting the signature of extra dimensions
through collider-based experiments is explored in the context of a multiply
warped spacetime. In particular it is shown that in a doubly warped braneworld
model, the presence of the sixth dimension, results in enhanced concentration
of graviton Kaluza Klein (KK) modes compared to that obtained in the usual
5-dimensional Randall-Sundrum model. Also, the couplings of these massive
graviton KK modes with the matter fields on the visible brane turn out to be
appreciably larger than that in the corresponding 5- dimensional model. The
significance of these results are discussed in the context of KK graviton
search at the Large Hadron Collider (LHC).Comment: 13 pages, 2 table
- …