24 research outputs found
Stromal-Derived NRG1 Enables Oncogenic KRAS Bypass in Pancreas Cancer
Activating KRAS mutations (KRAS*) in pancreatic ductal adenocarcinoma (PDAC) drive anabolic metabolism and support tumor maintenance. KRAS* inhibitors show initial antitumor activity followed by recurrence due to cancer cell-intrinsic and immune-mediated paracrine mechanisms. Here, we explored the potential role of cancer-associated fibroblasts (CAFs) in enabling KRAS* bypass and identified CAF-derived NRG1 activation of cancer cell ERBB2 and ERBB3 receptor tyrosine kinases as a mechanism by which KRAS*-independent growth is supported. Genetic extinction or pharmacological inhibition of KRAS* resulted in up-regulation of ERBB2 and ERBB3 expression in human and murine models, which prompted cancer cell utilization of CAF-derived NRG1 as a survival factor. Genetic depletion or pharmacological inhibition of ERBB2/3 or NRG1 abolished KRAS* bypass and synergized with KRA
Functional and Evolutionary Integration of a Fungal Gene With a Bacterial Operon
Funding Information: This material is based upon work supported in part by the Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office of Science, Biological and Environmental Research Program under Award Number DE-SC0018409; the National Science Foundation (under grant Nos. DBI-2305612 to K.T.D., DEB-2110403 to C.T.H., and DEB-2110404 to A.R.); and the National Institute of Food and Agriculture, United States Department of Agriculture, Hatch project 7005101. C.T.H. is an H. I. Romnes Faculty Fellow, supported by the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation. Research in the Rokas lab is also supported by the National Institutes of Health/National Institute of Allergy and Infectious Diseases (R01 AI153356), and the Burroughs Welcome Fund. Publisher Copyright: © The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizontal acquisition of a bacterial operon enabling enterobactin synthesis. Yet, how these yeasts absorb the iron bound by enterobactin remains unresolved. Here, we demonstrate that Enb1 is the key enterobactin importer in the W/S-clade species Starmerella bombicola. Through phylogenomic analyses, we show that ENB1 is present in all W/S clade yeast species that retained the enterobactin biosynthetic genes. Conversely, it is absent in species that lost the ent genes, except for Starmerella stellata, making this species the only cheater in the W/S clade that can utilize enterobactin without producing it. Through phylogenetic analyses, we infer that ENB1 is a fungal gene that likely existed in the W/S clade prior to the acquisition of the ent genes and subsequently experienced multiple gene losses and duplications. Through phylogenetic topology tests, we show that ENB1 likely underwent horizontal gene transfer from an ancient W/S clade yeast to the order Saccharomycetales, which includes the model yeast Saccharomyces cerevisiae, followed by extensive secondary losses. Taken together, these results suggest that the fungal ENB1 and bacterial ent genes were cooperatively integrated into a functional unit within the W/S clade that enabled adaptation to iron-limited environments. This integrated fungal-bacterial circuit and its dynamic evolution determine the extant distribution of yeast enterobactin producers and cheaters.publishersversionpublishe
Oncogenic KRAS Drives Lipofibrogenesis to Promote Angiogenesis and Colon Cancer Progression
Oncogenic KRAS (KRAS*) contributes to many cancer hallmarks. In colorectal cancer, KRAS* suppresses antitumor immunity to promote tumor invasion and metastasis. Here, we uncovered that KRAS* transforms the phenotype of carcinoma-associated fibroblasts (CAF) into lipid-laden CAFs, promoting angiogenesis and tumor progression. Mechanistically, KRAS* activates the transcription factor CP2 (TFCP2) that upregulates the expression of the proadipogenic factors BMP4 and WNT5B, triggering the transformation of CAFs into lipid-rich CAFs. These lipid-rich CAFs, in turn, produce VEGFA to spur angiogenesis. In KRAS*-driven colorectal cancer mouse models, genetic or pharmacologic neutralization of TFCP2 reduced lipid-rich CAFs, lessened tumor angiogenesis, and improved overall survival. Correspondingly, in human colorectal cancer, lipid-rich CAF and TFCP2 signatures correlate with worse prognosis. This work unveils a new role for KRAS* in transforming CAFs, driving tumor angiogenesis and disease progression, providing an actionable therapeutic intervention for KRAS*-driven colorectal cancer
Histone Demethylase kdm5d Upregulation Drives Sex Differences in Colon Cancer
Sex exerts a profound impact on cancer incidence, spectrum and outcomes, yet the molecular and genetic bases of such sex differences are ill-defined and presumptively ascribed to X-chromosome genes and sex hormones1. Such sex differences are particularly prominent in colorectal cancer (CRC) in which men experience higher metastases and mortality. A murine CRC model, engineered with an inducible transgene encoding oncogenic mutant KRASG12D and conditional null alleles of Apc and Trp53 tumour suppressors (designated iKAP)2, revealed higher metastases and worse outcomes specifically in males with oncogenic mutant KRAS (KRAS*) CRC. Integrated cross-species molecular and transcriptomic analyses identified Y-chromosome gene histone demethylase KDM5D as a transcriptionally upregulated gene driven by KRAS*-mediated activation of the STAT4 transcription factor. KDM5D-dependent chromatin mark and transcriptome changes showed repression of regulators of the epithelial cell tight junction and major histocompatibility complex class I complex components. Deletion of Kdm5d in iKAP cancer cells increased tight junction integrity, decreased cell invasiveness and enhanced cancer cell killing by CD8+ T cells. Conversely, iAP mice engineered with a Kdm5d transgene to provide constitutive Kdm5d expression specifically in iAP cancer cells showed an increased propensity for more invasive tumours in vivo. Thus, KRAS*-STAT4-mediated upregulation of Y chromosome KDM5D contributes substantially to the sex differences in KRAS* CRC by means of its disruption of cancer cell adhesion properties and tumour immunity, providing an actionable therapeutic strategy for metastasis risk reduction for men afflicted with KRAS* CRC
Histone demethylase KDM5D drives sex-specific differences in colorectal cancer
View full abstracthttps://openworks.mdanderson.org/leading-edge/1011/thumbnail.jp
Telomeric Regulation of Chromosomal Instability in Colorectal Cancer
Telomere dysfunction drives chromosomal instability (CIN) during the transition from benign adenoma to malignant adenocarcinoma. While CIN provides a mutator mechanism for cancer-relevant genomic events, its role in shaping tumor biology during carcinogenesis is not well understood. Here, we explored the molecular and biological impact of telomere dysfunction and associated CIN in vivo in a faithful model of CRC. In vivo lineage tracing revealed that CIN increased neoplastic cell competition and clonal expansion through accelerated differentiation of neighboring stem cells, resulting in increased number of adenomas and decreased survival in CIN-high Apcmin mice. Mechanistically, CIN represses EZH2 leading to upregulation of secreted Wnt antagonists, which resulted in a growth advantage to CIN-high neoplastic cells. Correspondingly, pharmacological activation of intrinsic WNT signaling enhanced intestinal stem cells fitness, leading to reduced neoplastic cell clonal expansion and adenoma burden. Thus, the CIN-EZH2-WNT axis enhances intestinal cancer initiation in the nascent tumor microenvironment, providing a preventive strategy for patients harboring germline APC mutations
Estrogen Acts Through Estrogen Receptor 2b to Regulate Hepatobiliary Fate During Vertebrate Development
During liver development bipotent progenitor cells differentiate into hepatocytes and biliary epithelial cells (BECs) to ensure a functional liver required to maintain organismal homeostasis. The developmental cues controlling the differentiation of committed progenitors into these cell types, however, are incompletely understood. Here, we discover an essential role for estrogenic regulation in vertebrate liver development to affect hepatobiliary fate decisions. Exposure of zebrafish embryos to 17β-estradiol (E2) during liver development significantly decreased hepatocyte-specific gene expression, liver size, and hepatocyte number. In contrast, pharmacological blockade of estrogen synthesis or nuclear estrogen receptor signaling enhanced liver size and hepatocyte marker expression. Transgenic reporter fish demonstrated nuclear estrogen receptor activity in the developing liver. Chemical inhibition and morpholino knockdown of nuclear estrogen receptor 2b (esr2b) increased hepatocyte gene expression and blocked the effects of E2 exposure. esr2b(−/−) mutant zebrafish exhibited significantly increased expression of hepatocyte markers with no impact on liver progenitors, other endodermal lineages or vasculature. Significantly, E2-stimulated Esr2b activity promoted biliary epithelial differentiation at the expense of hepatocyte fate, while loss of esr2b impaired biliary lineage commitment. Chemical and genetic epistasis studies identified bone morphogenetic protein (BMP) signaling as a mediator of the estrogen effects. The divergent impact of estrogen on hepatobiliary fate was confirmed in a human hepatoblast cell line, indicating the relevance of this pathway for human liver development. CONCLUSION: Our studies identify E2, esr2b and downstream BMP activity as important regulators of hepatobiliary fate decisions during vertebrate liver development. These results have significant clinical implications for liver development in infants exposed to abnormal estrogen levels or estrogenic compounds during pregnancy
Estrogen Activation of G-Protein–Coupled Estrogen Receptor 1 Regulates Phosphoinositide 3-Kinase and mTOR Signaling to Promote Liver Growth in Zebrafish and Proliferation of Human Hepatocytes
Background & Aims: Patients with cirrhosis are at high risk for hepatocellular carcinoma (HCC) and often have increased serum levels of estrogen. It is not clear how estrogen promotes hepatic growth. We investigated the effects of estrogen on hepatocyte proliferation during zebrafish development, liver regeneration, and carcinogenesis. We also studied human hepatocytes and liver tissues. Methods: Zebrafish were exposed to selective modifiers of estrogen signaling at larval and adult stages. Liver growth was assessed by gene expression, fluorescent imaging, and histologic analyses. We monitored liver regeneration after hepatocyte ablation and HCC development after administration of chemical carcinogens (dimethylbenzanthrazene). Proliferation of human hepatocytes was measured in a coculture system. We measured levels of G-protein–coupled estrogen receptor (GPER1) in HCC and nontumor liver tissues from 68 patients by immunohistochemistry. Results: Exposure to 17β-estradiol (E2) increased proliferation of hepatocytes and liver volume and mass in larval and adult zebrafish. Chemical genetic and epistasis experiments showed that GPER1 mediates the effects of E2 via the phosphoinositide 3-kinase–protein kinase B–mechanistic target of rapamycin pathway: gper1-knockout and mtor-knockout zebrafish did not increase liver growth in response to E2. HCC samples from patients had increased levels of GPER1 compared with nontumor tissue samples; estrogen promoted proliferation of human primary hepatocytes. Estrogen accelerated hepatocarcinogenesis specifically in male zebrafish. Chemical inhibition or genetic loss of GPER1 significantly reduced tumor development in the zebrafish. Conclusions: In an analysis of zebrafish and human liver cells and tissues, we found GPER1 to be a hepatic estrogen sensor that regulates liver growth during development, regeneration, and tumorigenesis. Inhibitors of GPER1 might be developed for liver cancer prevention or treatment. Transcript Profiling: The accession number in the Gene Expression Omnibus is GSE92544
Supplementary Table S1 from Oncogenic KRAS Drives Lipofibrogenesis to Promote Angiogenesis and Colon Cancer Progression
Supplementary Table S1 includes differentially expressed genes from 4 fibroblast subtypes</p