1,543 research outputs found

    The role of syn-eruptive vesiculation on explosive basaltic activity at Mt. Etna, Italy

    Get PDF
    We investigated the dynamics of explosive activity at Mt. Etna between 31 August and 15 December 2006 by combining vesicle studies in the erupted products with measurements of the gas composition at the active, summit crater. The analysed scoria clasts present large, connected vesicles with complex shapes and smaller, isolated, spherical vesicles, the content of which increases in scoriae from the most explosive events. Gas geochemistry reports CO2/SO2 and SO2/HCl ratios supporting a deep-derived gas phase for fire-fountain activity. By integrating results from scoria vesiculation and gas analysis we find that the highest energy episodes of Mt. Etna activity in 2006 were driven by a previously accumulated CO2-rich gas phase but we highlight the lesser role of syn-eruptive vesicle nucleation driven by water exsolution during ascent. We conclude that syn-eruptive vesiculation is a common process in Etnean magmas that may promote a deeper conduit magma fragmentation and increase ash formation

    The role of syn-eruptive vesiculation on explosive basaltic activity at Mt. Etna, Italy

    Get PDF
    We investigated the dynamics of explosive activity at Mt. Etna between 31 August and 14 December 2006 by combining vesicle studies in the erupted products with measurements of the gas composition at the active, summit crater. The analysed scoria clasts present large, connected vesicles with complex shapes and smaller, isolated, spherical vesicles, the content of which increases in scoriae from the most explosive events. Gas geochemistry reports CO2/SO2 and SO2/HCl ratios supporting a deep-derived gas phase for fire-fountain activity. By integrating results from scoria vesiculation and gas analysis we find that the highest energy episodes of Mt. Etna activity in 2006 were driven by a previously accumulated CO2-rich gas phase but we highlight the lesser role of syn-eruptive vesicle nucleation driven by water exsolution during ascent. We conclude that syn-eruptive vesiculation is a common process in Etnean magmas that may promote a deeper conduit magma fragmentation and increase ash formatio

    New insights into volcanic processes at Stromboli from Cerberus, a remote-controlled open-path FTIR scanner system

    Get PDF
    The ordinary, low intensity, activity of Stromboli volcano is sporadically interrupted by more energetic events termed, depending on their intensity, “major explosions” and “paroxysms”. These short-lived energetic episodes represent a potential risk to visitors to the highly accessible summit of Stromboli. Observations made at Stromboli over the last decade have shown that the composition of gas emitted from the summit craters may change prior to such explosions, allowing the possibility that such changes may be used to forecast these potentially dangerous events. In 2008 we installed a novel, remote-controlled, open-path FTIR scanning system called Cerberus at the summit of Stromboli, with the objective of measuring gas compositions from individual vents within the summit crater terrace of the volcano with high temporal resolution and for extended periods. In this work we report the first results from the Cerberus system, collected in August-September 2009, November 2009 and May-June 2010. We find significant, fairly consistent, intra-crater variability for CO2/SO2 and H2O/CO2 ratios, and relatively homogeneous SO2/HCl ratios. In general, the southwest crater is richest in CO2, and the northeast crater poorest, while the central crater is richest in H2O. It thus appears that during the measurement period the southwest crater had a somewhat more direct connection to a primary, deep degassing system; whilst the central and northeast craters reflect a slightly more secondary degassing nature, with a supplementary, shallow H2O source for the central crater, probably related to puffing activity. Such water-rich emissions from the central crater can account for the lower crystal content of its eruption products, and emphasise the role of continual magma supply to the shallowest levels of Stromboli's plumbing system. Our observations of heterogeneous crater gas emissions and high H2O/CO2 ratios do not agree with models of CO2-flushing, and we show that simple depressurisation during magma ascent to the surface is a more likely model for H2O loss at Stromboli. We highlight that alternative explanations other than CO2 flushing are required to explain distributions of H2O and CO2 amounts dissolved in melt inclusions. We detected fairly systematic increases in CO2/SO2 ratio some weeks prior to major explosions, and some evidence of a decrease in this ratio in the days immediately preceding the explosions, with periods of low, stable CO2/SO2 ratios between explosions otherwise. Our measurements, therefore, confirm the medium term (~ weeks) precursory increases previously observed with MultiGas instruments, and, in addition, reveal new, short-term precursory decreases in CO2/SO2 ratios. immediately prior to the major explosions. Such patterns, if shown to be systematic, may be of great utility for hazard management at Stromboli's summit. Our results suggest that intra-crater CO2/SO2 variability may produce short-term peaks and troughs in CO2/SO2 time series measured with in-situ MultiGas instruments, due simply to variations in wind direction

    Mirtazapine in the treatment of essential tremor: an open-label, observer-blind study

    Get PDF
    Essential tremor (ET) is the most common movement disorder in the adult population. At present ET treatment shows limited efficacy, particularly in patients with severe and disabling symptoms. This study evaluates the clinical efficacy of mirtazapine in an untreated ET patient population

    Toxicological Findings of Self-Poisoning Suicidal Deaths: A Systematic Review by Countries

    Get PDF
    The use of illicit and non-illicit substances is widespread in suicides. The toxicological data may help in understanding the mechanism of death. This systematic review aimed to analyze autopsies related to suicides by consuming poison, focusing on the correlation between substance use and the country of origin to create an alarm bell to indicate that suicide maybe attempted and prevent it. The systematic review was conducted according to the PRISMA guidelines, with the primary objective of identifying autopsies conducted in cases of suicide by consuming poison in specific geographic areas. Significant differences in substances were observed between low-income and Western countries that confirm previous literature data. In rural areas and Asian countries, most suicides by consuming poison involve the use of pesticides, such as organophosphates and carbamates. In Western countries, illicit drugs and medically prescribed drugs are the leading cause of suicide by self-poisoning. Future research should shed light on the correlation between social, medical, and demographic characteristics and the autopsy findings in suicides by self-poisoning to highlight the risk factors and implement tailored prevention programs worldwide. Performing a complete autopsy on a suspected suicide by self-poisoning could be essential in supporting worldwide public health measures and policy makers. Therefore, complete autopsies in such cases must be vigorously promoted

    Degassing behavior of Mt. Etna volcano (Italy) during 2007-2008, inferred

    Get PDF
    Studies on volcanic degassing have recently shown the important role of volatile release from active volcanoes in understanding magmatic processes prior to eruptions. Here we present and discuss the evolution of magmatic degassing that preceded and accompanied the 2008 Mt. Etna eruption. We tracked the ascent of magma bodies by high-temporal resolution measurements of SO2 emission rates and discrete sampling of SO2/HCl and SO2/HF molar ratios in the crater plume, as well as by periodic measurement of soil CO2 emission rates. Our data suggest that the first signs of upward migration of gas-rich magma before the 2008 eruption were observed in June 2007, indicated by a strong increase in soil CO2 efflux followed by a slow declining trend in SO2 flux and halogens. This degassing behavior preceded the mid-August 2007 summit activity culminated with the September 4th paroxysmal event. Five months later, a new increase in both soil CO2 and SO2 emission rates occurred before the November 23rd paroxysm, to drop down in late December. In the following months, geochemical parameters showed high variability, characterized by isolated sudden increases occurred in early December 2007 and late March 2008. In early May soil CO2, SO2 emission rates and S/Cl molar ratio gradually increased. Crater degassing peaked on May 13th marking the onset of the eruption. Eruptive activity was accompanied by a general steady-state of SO2 flux characterized by two main degassing cycles. These cycles preceded explosive activity at the eruptive vents, indicating terminal new-arrival of deep gas-rich magma bodies in the shallow plumbing system of Mt Etna. Conversely, halogens described a slight increasing trend till the end of 2008. These observations suggest an impulsive syn-eruptive dynamics of magma transfer from depth to the surface. Differently from the SO2 emission rates, the S/Cl ratio and the soil CO2 efflux values showed an increasing trend from mid-April to mid-July 2008, indicating steady-increasing input of deeper, gas-rich magma. Since August, geochemical parameters decreased, suggesting that new magma has not arrived from depth. According to our interpretation, both the CO2 efflux and the S/Cl ratio increases observed in early November may indicate a new input of fresh magma form depth. Finally, the estimated volume of degassing magma showed substantial equilibrium between degassed and erupted magma suggesting an “eruptive” steady-state of the volcano

    High-density neutrophils in MGUS and multiple myeloma are dysfunctional and immune-suppressive due to increased STAT3 downstream signaling

    Get PDF
    To understand neutrophil impairment in the progression from MGUS through active MM, we investigated the function of mature, high-density neutrophils (HDNs), isolated from peripheral blood. In 7 MM, 3 MGUS and 3 healthy subjects by gene expression profile, we identified a total of 551 upregulated and 343 downregulated genes in MM-HDN, involved in chemokine signaling pathway and FC-gamma receptor mediated phagocytosis conveying in the activation of STAT proteins. In a series of 60 newly diagnosed MM and 30 MGUS patients, by flow-cytometry we found that HDN from MM, and to a lesser extend MGUS, had an up-regulation of the inducible FcÎłRI (also known as CD64) and a down-regulation of the constitutive FcÎłRIIIa (also known as CD16) together with a reduced phagocytic activity and oxidative burst, associated to increased immune-suppression that could be reverted by arginase inhibitors in co-culture with lymphocytes. In 43 consecutive newly-diagnosed MM patients, who received first-line treatment based on bortezomib, thalidomide and dexamethasone, high CD64 could identify at diagnosis patients with inferior median overall survival (39.5 versus 86.7 months, p = 0.04). Thus, HDNs are significantly different among healthy, MGUS and MM subjects. In both MGUS and MM neutrophils may play a role in supporting both the increased susceptibility to infection and the immunological dysfunction that leads to tumor progression

    Installation and first results from a remote-controlled automatic FTIR spectrometer on

    Get PDF
    The first successful FTIR measurements on Stromboli were conducted in 2000, producing remarkable insights into the rapidly changing dynamics of degassing and explosive processes. The ability of the FTIR to simultaneously measure all the major species contained in volcanic gas emissions (H2O, CO2, SO2, HCl, HF, CO, OCS, SiF4) at high temporal resolution, when combined with the automatic SO2 flux monitoring system already installed on Stromboli could allow fluxes of all these gases to be determined accurately and automatically. In order to achieve this objective, we have designed a remotely controlled FTIR-scanner system that allows directional control over the field of view of the spectrometer. The system is planned for installation in June/July 2008, and we will present the first results from the system in this paper
    • …
    corecore