25 research outputs found

    Astronomical Dating and the Internal Chronology of the Pentateuch

    Full text link
    Some of the narratives in the Pentateuch can be associated with known astronomical events to provide absolute dates for biblical chronology.Comment: 29 pages, 12 figure

    Correlated Equilibria of Classical Strategic Games with Quantum Signals

    Get PDF
    Correlated equilibria are sometimes more efficient than the Nash equilibria of a game without signals. We investigate whether the availability of quantum signals in the context of a classical strategic game may allow the players to achieve even better efficiency than in any correlated equilibrium with classical signals, and find the answer to be positive.strategic games, quantum mechanics, correlated equilibrium, coordination, entanglement, efficiency

    Deriving the Qubit from Entropy Principles

    Full text link
    The Heisenberg uncertainty principle is one of the most famous features of quantum mechanics. However, the non-determinism implied by the Heisenberg uncertainty principle --- together with other prominent aspects of quantum mechanics such as superposition, entanglement, and nonlocality --- poses deep puzzles about the underlying physical reality, even while these same features are at the heart of exciting developments such as quantum cryptography, algorithms, and computing. These puzzles might be resolved if the mathematical structure of quantum mechanics were built up from physically interpretable axioms, but it is not. We propose three physically-based axioms which together characterize the simplest quantum system, namely the qubit. Our starting point is the class of all no-signaling theories. Each such theory can be regarded as a family of empirical models, and we proceed to associate entropies, i.e., measures of information, with these models. To do this, we move to phase space and impose the condition that entropies are real-valued. This requirement, which we call the Information Reality Principle, arises because in order to represent all no-signaling theories (including quantum mechanics itself) in phase space, it is necessary to allow negative probabilities (Wigner [1932]). Our second and third principles take two important features of quantum mechanics and turn them into deliberately chosen physical axioms. One axiom is an Uncertainty Principle, stated in terms of entropy. The other axiom is an Unbiasedness Principle, which requires that whenever there is complete certainty about the outcome of a measurement in one of three mutually orthogonal directions, there must be maximal uncertainty about the outcomes in each of the two other directions.Comment: 8 pages, 3 figure

    R\'enyi Entropy, Signed Probabilities, and the Qubit

    Full text link
    The states of the qubit, the basic unit of quantum information, are 2×22\times2 positive semi-definite Hermitian matrices with trace 11. We characterize these states in terms of an entropic uncertainty principle formulated on an eight-point phase space.Comment: 11 pages, 1 figur

    Correlated Equilibria of Classical Strategic Games with Quantum Signals

    Full text link
    Correlated equilibria are sometimes more efficient than the Nash equilibria of a game without signals. We investigate whether the availability of quantum signals in the context of a classical strategic game may allow the players to achieve even better efficiency than in any correlated equilibrium with classical signals, and find the answer to be positive.Comment: 8 pages, LaTe

    Projective Expected Utility

    Full text link
    Motivated by several classic decision-theoretic paradoxes, and by analogies with the paradoxes which in physics motivated the development of quantum mechanics, we introduce a projective generalization of expected utility along the lines of the quantum-mechanical generalization of probability theory. The resulting decision theory accommodates the dominant paradoxes, while retaining significant simplicity and tractability. In particular, every finite game within this larger class of preferences still has an equilibrium.Comment: 7 pages, to appear in the Proceedings of Quantum Interaction 200
    corecore