123 research outputs found
Occupational health and safety issues in human-robot collaboration: State of the art and open challenges
Human-Robot Collaboration (HRC) refers to the interaction of workers and robots in a shared workspace. Owing to the integration of the industrial automation strengths with the inimitable cognitive capabilities of humans, HRC is paramount to move towards advanced and sustainable production systems. Although the overall safety of collaborative robotics has increased over time, further research efforts are needed to allow humans to operate alongside robots, with awareness and trust. Numerous safety concerns are open, and either new or enhanced
technical, procedural and organizational measures have to be investigated to design and implement inherently safe and ergonomic automation solutions, aligning the systems performance and the human safety. Therefore, a bibliometric analysis and a literature review are carried out in the present paper to provide a comprehensive overview of Occupational Health and Safety (OHS) issues in HRC. As a result, the most researched topics and application areas, and the possible future lines of research are identified. Reviewed articles stress the central role
played by humans during collaboration, underlining the need to integrate the human factor in the hazard analysis and risk assessment. Human-centered design and cognitive engineering principles also require further investigations to increase the worker acceptance and trust during collaboration. Deepened studies are compulsory in the healthcare sector, to investigate the social and ethical implications of HRC. Whatever the application context is, the implementation of more and more advanced technologies is fundamental to overcome the current HRC safety concerns, designing low-risk HRC systems while ensuring the system productivity
Life cycle analysis of innovative building materials based on circular coffee ground supply chain
The construction sector is widely recognized as one of the most polluting mainly due to its intensive exploitation of natural resources and large energy consumption to produce traditional building materials. In the last years, alternative building materials have been developed with the aim to reduce the environmental burden of this sector. In particular, the use of geopolymer mortars as alternative cementitious materials is gaining increasing acceptance among scientists. Numerous laboratory studies demonstrate their suitability for construction applications, highlighting the potential environmental benefits that can be obtained from their large-scale production. This study aims to perform a preliminary evaluation of the environmental performance of a geopolymer mortar, whose production includes the reuse of a food waste: Spent Coffee Ground (SCG). By using the Life Cycle Assessment (LCA) approach, an environmental comparison with a traditional production of cement mortar was carried out on the basis of the Global Warming Potential (GWP) indicator
Project management information systems (Pmiss): A statistical-based analysis for the evaluation of software packages features
Project Managers (PMs) working in competitive markets are finding Project Management Information Systems (PMISs) useful for planning, organizing and controlling projects of varying complexity. A wide variety of PMIS software is available, suitable for projects differing in scope and user needs. This paper identifies the most useful features found in PMISs. An extensive literature review and analysis of commercial software is made to identify the main features of PMISs. After-wards, the list is reduced by a panel of project management experts, and a statistical analysis is performed on data acquired by means of two different surveys. The relative importance of listed features is properly computed, and the interactions between the respondent’s profiles and PMIS features are also investigated by cluster and respondents’ analyses. The paper provides information for researchers and practitioners interested in PMISs packages and their applications. Furthermore, the analyses may help practitioners when choosing a PMIS, and also for developers of PMISs software in understanding user needs
Electromagnetic Transients on Power Plant Connection Caused by Lightning Event
Lightning events can seriously damage the power systems and they represent one of the most dangerous causes of faults in the transmission lines. Usually, when one want to analyze such effects it is necessary to rely on approximate models or to simplify in some ways the power system. As a consequence, an overall analysis taking into account the complexity of the power system is difficult to find. This paper presents the study of the electromagnetic transients caused by lightning events in a point of connection between a real power plant and a large power grid. The analysis is achieved with a high level of details of the power system and the simulations are obtained through an EMT-type software (PSCAD-EMTDC). Different simulations are analyzed, showing how the cables and the transformers are affected by the electromagnetic transients
Food safety risk analysis from the producers' perspective: prioritisation of production process stages by HACCP and TOPSIS
[EN] From the manufacturers perspective, the Hazard Analysis and Critical Control Point
(HACCP) system nowadays represents the mainly way to implement the food safety risk
management in food industries. Nevertheless, the identification and prioritization of hazards as the
outcome of the first principle of HACCP is not sufficient to identify production process stages that
more significantly and critically contribute to the consumer¿s risks. With this recognition, the
present paper proposes a Quantitative Risk Assessment (QRA) approach based on HACCP and
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to individuate
production process phases on which implementing corrective actions to improve the consumers¿
safety. The designed methodological approach is implemented on the smoked salmon
manufacturing process of a real Sicilian industry.Certa, A.; Enea, M.; Galante, G.; Izquierdo Sebastián, J.; La Fata, CM. (2018). Food safety risk analysis from the producers' perspective: prioritisation of production process stages by HACCP and TOPSIS. International Journal of Management and Decision Making. 17(4):396-414. https://doi.org/10.1504/IJMDM.2018.095720S39641417
Recommended from our members
Recent development of prebiotic research — statement from an expert workshop
A dietary prebiotic is defined as ‘a substrate that is selectively utilized by host microorganisms conferring a health benefit’. Although this definition evolved concomitantly with the knowledge and technological developments that accrued in the last twenty years, what qualifies as prebiotic continues to be a matter of debate. In this statement, we report the outcome of a workshop where academic experts working in the field of prebiotic research met with scientists from industry. The workshop covered three main topics: (i) evolution of the prebiotic concept/definition; (ii) the gut modeling in vitro technology PolyFermS to study prebiotic effects; and (iii) the potential novel microbiome-modulating effects associated with vitamins. The future of prebiotic research is very promising. Indeed, the technological developments observed in recent years provide scientists with powerful tools to investigate the complex ecosystem of gut microbiota. Combining multiple in vitro approaches with in vivo studies is key to understanding the mechanisms of action of prebiotics consumption and their potential beneficial effects on the host
Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible.
To uncover the circuit-level alterations that underlie atypical sensory processing associated with autism, we adopted a symptom-to-circuit approach in the Fmr1-knockout (Fmr1-/-) mouse model of Fragile X syndrome. Using a go/no-go task and in vivo two-photon calcium imaging, we find that impaired visual discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons and with a decrease in the activity of parvalbumin interneurons in primary visual cortex. Restoring visually evoked activity in parvalbumin cells in Fmr1-/- mice with a chemogenetic strategy using designer receptors exclusively activated by designer drugs was sufficient to rescue their behavioral performance. Strikingly, human subjects with Fragile X syndrome exhibit impairments in visual discrimination similar to those in Fmr1-/- mice. These results suggest that manipulating inhibition may help sensory processing in Fragile X syndrome
Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.
A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions
- …