60 research outputs found

    Modelling of the enar-field distribution of pollutants from a coastal outfall subject to tidal currents

    Get PDF
    Pollutant distribution from a coastal outfall is studied accounting for tidal currents. The problem is solved using k-eps model. The constants in the logarithmic law for vertical velocity profile in the bbl (bottom boundary layer) are obtained by processing experimental data from a current profiler. The near-field distribution of pollutant concentration at different distances from the diffusor are obtained for different times, in terms of ambient flow velocity and outfall discharge characteristics

    Numerical modeling of a dilution and transport of highly salty effluent in water bodies

    Get PDF
    The paper focuses on modeling of dilution and transport of highly salty effluent in water bodies. The modeling is made for three-dimensional unsteady regimes of turbulent mixing in the conditions of strong density stratification. Numerical results allow to determine the limits of applicability of two-dimensional hydrodynamic models and to estimate the maximal possible environmentally safe volumes of highly salty effluent disposal

    A Numerical Study of the Influence of Channel-Scale Secondary Circulation on Mixing Processes Downstream of River Junctions

    Get PDF
    International audienceA rapid downstream weakening of the processes that drive the intensity of transverse mixing at the confluence of large rivers has been identified in the literature and attributed to the progressive reduction in channel scale secondary circulation and shear-driven mixing with distance downstream from the junction. These processes are investigated in this paper using a three-dimensional computation of the Reynolds averaged Navier Stokes equations combined with a Reynolds stress turbulence model for the confluence of the Kama and Vishera rivers in the Russian Urals. Simulations were carried out for three different configurations: an idealized planform with a rectangular cross-section (R), the natural planform with a rectangular cross-section (P), and the natural planform with the measured bathymetry (N), each one for three different discharge ratios. Results show that in the idealized configuration (R), the initial vortices that form due to channel-scale pressure gradients decline rapidly with distance downstream. Mixing is slow and incomplete at more than 10 multiples of channel width downstream from the junction corner. However, when the natural planform and bathymetry are introduced (N), rates of mixing increase dramatically at the junction corner and are maintained with distance downstream. Comparison with the P case suggests that it is the bathymetry that drives the most rapid mixing and notably when the discharge ratio is such that a single channel-scale vortex develops aided by curvature in the post junction channel. This effect is strongest when the discharge of the tributary that has the same direction of curvature as the post junction channel is greatest. A comprehensive set of field data are required to test this conclusion. If it holds, theoretical models of mixing processes in rivers will need to take into account the effects of bathymetry upon the interaction between river discharge ratio, secondary circulation development, and mixing rates

    Capture of particles of dust by convective flow

    Full text link
    Interaction of particles of dust with vortex convective flows is under theoretical consideration. It is assumed that the volume fraction of solid phase is small, variations of density due to nonuniform distribution of particles and those caused by temperature nonisothermality of medium are comparable. Equations for the description of thermal buoyancy convection of a dusty medium are developed in the framework of the generalized Boussinesq approximation taking into account finite velocity of particle sedimentation. The capture of a cloud of dust particles by a vortex convective flow is considered, general criterion for the formation of such a cloud is obtained. The peculiarities of a steady state in the form of a dust cloud and backward influence of the solid phase on the carrier flow are studied in detail for a vertical layer heated from the sidewalls. It is shown that in the case, when this backward influence is essential, a hysteresis behavior is possible. The stability analysis of the steady state is performed. It turns out that there is a narrow range of governing parameters, in which such a steady state is stable.Comment: 14 pages, 10 figures, published in Physics of Fluid
    corecore