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Stability and nonlinear regimes of stationary advective flows of binary fluids in a horizontal
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case of rigid adiabatic boundaries. The problem is considered taking into account the
Soret effect. Stability maps in the parameter plane “Rayleigh number–separation ratio” are
obtained for several typical binary fluids.
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1. Introduction

This paper is devoted to the investigation of stability and nonlinear spatially periodic regimes of advective flows of binary
fluids in a horizontal layer with rigid adiabatic boundaries, taking into account the Soret effect.

There are a large number of papers devoted to the investigation of one- and two-dimensional advective flows of single-
component fluids in a horizontal layer and horizontal rectangular enclosure for different thermal boundary conditions.
Stability of stationary advective flows of single-component fluid in a horizontal layer with rigid boundaries was investigated
in [1,2] for perfectly conductive boundaries (see also monograph [3]) and in [4] for insulated boundaries. Numerical inves-
tigation of stationary advective flows of single-component fluid in a horizontally elongated rectangular cavity with perfectly
conductive and adiabatic boundaries was carried out in [5,6]. Stability of a binary fluid advective flow in a horizontal layer
with rigid boundaries subjected to the homogeneous longitudinal temperature and concentration gradients was studied
in [7]. The stationary advective flows of binary fluid in a horizontally elongated rectangular cavity with insulated bound-
aries were studied analytically and numerically in [8], taking into account the thermal diffusion and diffusive conductivity.
The stability of the Soret-driven stationary advective flows of binary fluid in a horizontal layer with perfectly conductive
boundaries subjected to the homogeneous longitudinal temperature gradient was studied in a recent paper [9]. The stability
of stationary advective flows of binary fluid in a horizontal layer with adiabatic boundaries had not been considered earlier.

2. Problem formulation. Governing equations

Let us consider a binary fluid flow in a horizontal layer subjected to the homogeneous horizontal temperature gradient by
setting different constant temperatures on the removed vertical walls and bounded at its top and bottom by rigid adiabatic
plates x = ±h (x is the vertical axis and z is the horizontal axis along the layer). The fluid density is linearly dependent
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on the temperature and concentration of the lighter component ρ = 〈ρ〉(1 − β1T − β2C), where 〈ρ〉 is the fluid density at
some temperature and concentration values, which have been taken as the reference, T and C are the small deviations from
these values, β1 is the mixture thermal expansion coefficient, and β2 is the concentration coefficient of density (β2 > 0).

We choose the quantities h, h2/χ , χ/h, Ah, Ahβ1/β2 and 〈ρ〉νχ/h2 as the scales for length, time, velocity, temperature,
concentration and pressure, respectively (A is the value of the imposed longitudinal temperature gradient).

The non-dimensional equations for buoyancy convection in the Boussinesq approximation accounting for the Soret effect
(the effect of diffusive conductivity is assumed to be small) read:

1

Pr

(
∂�v
∂t

+ �v · ∇�v
)

= −∇p + ��v + Ra(T + C) �γ , div �v = 0

∂T

∂t
+ �v · ∇T = �T ,

∂C

∂t
+ �v · ∇C = 1

Le
(�C − ε�T ) (1)

Here �v is the fluid velocity; p is the addition to the hydrostatic pressure due to convection; ε = −αβ2/β1 is the separa-
tion ratio; Ra = gβ1 Ah4/νχ is the Rayleigh number; Pr = ν/χ is the Prandtl number; Le = χ/D is the Lewis number; g is
the gravity force acceleration; ν and χ are the kinematic viscosity and thermal diffusivity of the mixture, respectively; D is
the diffusion coefficient; α = kT/Ta, where kT is the thermodiffusion ratio, Ta is the absolute temperature; �γ is the unit
vector directed vertically upward. The temperature and concentration dependences of the parameter α and other kinetic
coefficients are neglected.

On the layer boundaries, we set the no-slip conditions and the absence of heat and mass fluxes. In addition, the closeness
conditions for the flow and solute flux associated with diffusion, thermodiffusion and convection are imposed. The value of
the horizontal temperature gradient is assumed to be fixed:

�v = 0,
∂T

∂n
= 0,

∂C

∂n
+ ε

∂T

∂n
= 0,

∫
�v dS = 0,

∫
(Le �vC − B + ε)dS = 0 (2)

3. Basic solution

We search for the steady-state solution of the problem in the form:

�v = (
0,0,v0(x)

)
, C0 = Bz + c0(x), T0 = z + ϑ0(x), p = p0(x, z) (3)

Here B is the longitudinal concentration gradient formed in the layer, the value of which is to be defined; v0 is the basic
state velocity directed along the z-axis.

The equations and boundary conditions describing the basic state (3) have the form:

∂3v0

∂x3
= Ra(1 + B), v0 = ∂2ϑ0

∂x2
, −LeBv0 = ∂2c0

∂x2
− ε

∂2ϑ0

∂x2
(4)

x = ±1: v0 = 0,
∂ϑ0

∂x
= 0,

∂c0

∂x
= 0 (5)

and the closeness conditions for the flow and solute flux are:

1∫
−1

v0 dx = 0,

1∫
−1

(Le v0c0 − B + ε)dx = 0 (6)

The problem (4)–(6) is nonlinear. By solving this problem, we obtain the following expressions for velocity, temperature and
concentration profiles in a steady state:

v0 = V 0x
(
x2 − 1

)
, ϑ0 = 1

60
V 0x

(
3x4 − 10x2 + 15

)
, c0 = (LeB + ε)ϑ0 (7)

The value of the horizontal concentration gradient B is obtained from (6):

B = −ε
(
8V 2

0 Le − 315
)
/
(
8V 2

0 Le2 + 315
)

(8)

and the relation between the velocity amplitude V 0 and the Rayleigh number is given by the formula:

Ra = 6V 0

1 + B
= 6V 0(8V 2

0 Le2 + 315)

8V 2
0 Le2 + 315 − 8εV 2

0 Le + 315ε
(9)

For small values of the Rayleigh number and finite values of the Lewis number, we obtain, from (8) and (9):

V 0 = 1
(1 + ε)Ra + O

(
Ra3), B = ε + O

(
Ra2) (10)
6
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Fig. 1. Steady-state flow amplitude V 0 vs. Rayleigh number for Pr = 0.01, Le = 1000 and ε = −0.87,−0.95,−1.2 (curves 1–3).

In the case of the positive Soret effect (ε > 0), thermodiffusion results in the accumulation of the lighter component in
the warmer part of the layer. Thus, when ε > 0 the fluid density near the hot boundary decreases, due to both thermal
expansion and accumulation of the lighter component. As it is seen from (10), in this case the thermodiffusion leads to
the convective flow velocity growth. In the case of the negative Soret effect (ε < 0), when thermodiffusion results in the
accumulation of the lighter component in the colder part of the layer, the flow intensity decreases and, at ε = −1, the
velocity takes a zero value together with the density gradient. Note that at ε = −1 the diffusive state may exist for any
value of the Rayleigh number. At ε < −1, the velocity has the opposite sign due to the change in the sign of the density
gradient.

The nonlinearity of the problem results in the possibility of the solution’s non-uniqueness. It is possible to show that,
for ε > ε∗ = −8Le/(9Le + 1), the solution is unique, and at ε < ε∗ , there is an interval of the Rayleigh number (which
is dependent on ε), in which there are three steady-state solutions. The boundaries of the domain of non-uniqueness
correspond to the tangent bifurcation. They are obtained in the parametric form:

Ra = 99 225Le + 2520ξ2(3Le + 1) − 64ξ4

840ξLe(Le + 1)
, ε = − (8ξ2 + 315)2Le

99 225Le + 2520ξ2(3Le + 1) − 64ξ4

where ξ = V 0Le.
For ε > −1, the domain of non-uniqueness is bounded from above and from below and exists at ε < ε∗ , whereas for

ε �−1 the domain of non-uniqueness is bounded only from below.
The case ε = −1 is special. For ε = −1, the diffusive state corresponds to one of the branches of the steady-state solution,

in which the thermal and concentration effects compensate each other. For this special case, the interesting dynamics is
obtained in [10] for the rectangular cavity with an aspect ratio equal to 2. In [11], the onset of double diffusive convection
in vertical enclosures with equal and opposing buoyancy forces due to horizontal thermal and concentration gradients was
studied. It is verified that the onset of double diffusive convection corresponds to a transcritical bifurcation point.

The diagram V 0(Ra) for Pr = 0.01, Le = 1000 and ε = −0.87,−0.95,−1.2 (curves 1–3) is shown in Fig. 1, where the
solid lines correspond to the stable branches of steady-state solutions and the dashed lines to the unstable branches.

4. Problem of the stability of basic state

Let us consider the stability of the basic state (7)–(9). Linearized equations and boundary conditions for small perturba-
tions of the basic state have the form:

1

Pr

(
∂�v
∂t

+ �v · ∇�v0 + �v0 · ∇�v
)

= −∇p + ��v + Ra(T + C) �γ , div �v = 0

∂T

∂t
+ �v · ∇T0 + �v0 · ∇T = �T ,

∂C

∂t
+ �v · ∇C0 + �v0 · ∇C = 1

Le
(�C − ε�T )

x = ±1: �v = 0,
∂T

∂x
= 0,

∂C

∂x
= 0 (11)

In the general case of three-dimensional perturbations, all quantities are proportional to exp[−λt + i(ky y + kz z)] (here the
y-axis is the horizontal axis perpendicular to the direction of the basic flow). For the problem under consideration, there
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is no analogue of the Squire transformation, i.e. no transformation, which reduces the three-dimensional problem to the
two-dimensional one. For that reason, two limit cases were considered: plane perturbations with ky = 0 (the rolls with axes
perpendicular to the basic flow direction), and spiral perturbations with kz = 0 (the rolls with axes parallel to the basic flow
direction).

5. Long-wave instability of a steady-state unidirectional flow

It is impossible to obtain the analytical solution of the stability problem (11) for arbitrary values of the wave num-
ber. However, the case of long-wave perturbations allows full enough analytical investigation. For that, the solution of the
problem and the increment were represented in the form of power series in wave number.

For plane long-wave perturbations, the stability boundaries in the parameter plane Ra–ε are obtained under the form:

Ra = 6ξ(8ξ2 + 315)

8ξ2(Le − ε) + 315Le(ε + 1)

ε = Le(8ξ2 + 105Le2)(8ξ2 + 315)2

512ξ6 + 6720(Le2 − 5Le + 1)(ξ4 − 264 600Le(3Le2 + Le + 3)ξ2 − 10 418 625Le3)

and, for spiral perturbations, under the form:

Ra = 6ξ(8ξ2 + 315)

8ξ2(Le − ε) + 315Le(ε + 1)
, ε = − (8ξ2 + 315)(12ξ2 + 8 Pr ξ2 + 315Le2Pr)

64 Pr ξ4 + 3780ξ2(Le + 1) + 2520 Pr ξ2(Le2 + 1)

6. Instability to perturbations with finite wave numbers

The instability to the perturbations with finite wave numbers was investigated numerically by solving the boundary-
value problems for small normal-mode perturbations by the collocation method. The Chebyshev polynomials were used as
the trial functions. The number of trial functions was chosen from the requirement of convergence of the results and was
varied from 15 to 30 for different instability modes.

For single-component fluid, the instability of the unidirectional steady advective flow in a plane horizontal layer with
adiabatic boundaries may occur due to the plane monotonous hydrodynamic mode associated with the development of
stationary vortices at the boundary of towards flows, spiral oscillatory mode related to the excitation of internal waves in
the zone of stable stratification, and spiral monotonous mode [4]. The hydrodynamic mode is the most dangerous at small
values of the Prandtl number 0 < Pr < 0.033, at Pr ≈ 0.12 this instability mode is strongly stabilized due to the formation of
stable temperature stratification in the zone of vortex formation. In the range 0.033 < Pr < 0.2 the spiral oscillatory mode
is the most dangerous. At Pr ≈ 0.25, this mode is also sharply stabilized and the spiral monotonous mode, lying at small
Prandtl numbers much higher than the first two modes, becomes the most dangerous.

In the present paper, we consider three typical binary mixtures: 1, the liquid metal mixture with Pr = 0.01, Le = 1000
(hereinafter, mixture 1); 2, the gaseous mixture with Pr = 0.7, Le = 13/7 (hereinafter, mixture 2); 3, the solution of salt in
water with Pr = 6.7, Le = 101 (hereinafter, mixture 3).

In Figs. 2–4, the stability maps of the advective flow in the parameter plane Ra–ε are plotted for mixtures 1–3. The
domains of instability of the upper branch of stationary solutions are shown by shading to the left and the domains of
instability of the lower branch – by shading to the right, the double shading corresponds to the domains of the parameter
values in which all branches of stationary solutions are unstable. The structure of critical perturbations, corresponding to
different instability modes, is also shown in these figures.

In Fig. 2, the stability map for mixture 1 is plotted. For this mixture, the stationary advective flow is unique at ε > −0.88
and there are three stationary solutions at ε < −0.88. Curve 1, which intersects the axis ε = 0 at Ra = 5.103, corresponds
to the hydrodynamic instability mode with k ≈ 1.3; curve 2, intersecting the axis ε = 0 at Ra = 10.28, to the large-scale
spiral oscillatory perturbations with k ≈ 0.22, ω ≈ 8.9; curve 3, which intersects the axis ε = 0 at Ra = 181.1, to the
monotonous spiral instability mode with k ≈ 2.9. As one can see, at ε > −0.88 the thermodiffusion has practically no effect
on the occurrence of instability of basic flow of the mixture 1, all three curves are nearly horizontal, i.e. the behavior of
the mixture is close to that of a single-component fluid. The only difference is that the monotonous spiral mode (curve 3)
at ε ≈ 0.4 becomes oscillatory; besides, the critical Rayleigh number remains nearly the same and the oscillation frequency
varies from ω ≈ 0.27 to ω ≈ 1.3.

At ε < −0.88, the stationary solution of mixture 1 is non-unique. The boundaries of non-uniqueness are shown in
Fig. 2 by dash-dotted lines 4, 4′ . In the range of ε values from −0.88 to −1, the non-uniqueness domain is bounded
both from above and below. At ε = −1 for the lower branch of stationary solutions, the velocity is zero and at ε < −1,
it is of the opposite sign; moreover, this branch exists for any values of the Rayleigh number. When the Rayleigh number
Ra∗(ε) corresponds to curve 4, two upper branches of solutions are born through a tangent bifurcation; they exist at any
Ra > Ra∗(ε).

At ε < −0.88 the effect of thermodiffusion is significant. The instability boundaries 1, 2, 3 discussed above remain nearly
horizontal as in the case when ε > −0.88. However, at ε < −0.88, there exists much more dangerous instability mode; it is
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Fig. 2. Boundaries of the domain of non-uniqueness of the stationary solution (dash-dotted lines 4, 4′) and instability boundaries for mixture 1 (Pr = 0.01,
Le = 1000): curves 1–3, 5 for the upper branch of stationary solutions, curve 6 for the lower branch; 1, plane cellular monotonous hydrodynamic mode;
2, spiral cellular oscillatory mode; 3, spiral cellular mode; dash-dotted line 5, long-wave spiral monotonous mode; 6, plane cellular mode. Streamlines for
different instability modes.

Fig. 3. Boundaries of the domain of non-uniqueness of the stationary solution (dash-dotted lines 4, 4′) and instability boundaries for mixture 2 (Pr = 0.7,
Le = 13/7). Notations are the same as in Fig. 1. Streamlines of critical perturbations for spiral monotonous cellular mode.

the long-wave spiral monotonous mode, which is related to the effect of thermodiffusion and is absent in the case of a
single-component fluid.

The instability domain at ε < −0.88 lies between curves 5 and 4. At the lower boundary of this domain, the instability
to the perturbations in the whole range of wave number values (from zero to some finite value) exists. With the increase
of the Rayleigh number, the range of wave numbers corresponding to the growing perturbations is reduced and, at the
upper boundary, the instability exists only for long-wave perturbations. The middle branch of stationary solutions is always
unstable in the domain of non-uniqueness, and the lower branch corresponds to unstable plane cellular perturbations above
curve 6.

Let us now discuss the results for mixture 2. In the case of a single-component fluid at Pr = 0.7, the instability of
stationary advective flow is associated with the development of spiral monotonous perturbations with a wave number close
to 2 [4] (hydrodynamic and spiral oscillatory modes are subjected to sharp stabilization at lower Prandtl number values
and at Pr = 0.7 they are absent). Curve 3 in Fig. 3, defining the instability boundary to spiral monotonous perturbations for
mixture 2, crosses the axis ε = 0 at Ra = 14 834. For the positive Soret effect, this instability mode is strongly stabilized,
whereas for the negative Soret effect, it is strongly destabilized. The structure of the critical perturbation corresponding to
this mode is also shown in Fig. 3.
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Fig. 4. Instability boundaries for mixture 3 (Pr = 6.7, Le = 101): solid lines, instability boundaries of the upper branch of stationary solutions to the long-
wave plane monotonous mode; dash-dotted lines, to the long-wave spiral monotonous mode; curve 6, lower instability boundary for the lower branch of
stationary solutions.

The spiral monotonous perturbations with finite wave numbers are most dangerous at ε > −0.84. In the narrow range
of values of the separation ratio −0.85 < ε < −0.84, the instability occurs due to long-wave spiral perturbations and, at
ε < −0.85, instability to spiral perturbations in the whole range of wave number values (from zero to some finite value)
takes place. As in the case of mixture 1, for negative ε sufficiently large in absolute value, there exists an instability domain
of the upper branch of stationary solutions to spiral monotonous perturbations with small wave numbers. Conversely, unlike
in the case of mixture 1, this domain, confined between curves 4 and 5, is rather narrow.

As well as for the mixture 1, the lower branch of stationary solutions is unstable to the plane perturbations above
curve 6.

At Pr = 6.7, the stationary advective flow of the single-component fluid is stable [4]. The positive Soret effect does not
lead to the appearance of instability. For the negative Soret effect in the domain of non-uniqueness of stationary flow, as in
the cases discussed above, the upper branch of stationary solutions is unstable to the long-wave spiral perturbations in the
parameter range which corresponds to the domain between curves 4 and 5 in Fig. 4; the lower branch is unstable above
curve 6.

7. Nonlinear regimes

Investigation of nonlinear regimes of advective flows of binary mixtures was carried out numerically. The calculations
were performed following a two-dimensional approach. Applying the operation roty to the first equation of (1), introducing
the stream function ψ and the vorticity ϕ as �v = rot(ψ�j), roty�v = −�ψ = ϕ and separating the linear horizontal distribu-
tions of temperature and concentration T = ϑ + z, C = c + Bz, where B is calculated from the formula (7), we obtain the
following system of equations and boundary conditions at the horizontal boundaries:

∂ϕ

∂t
= �ϕ + Ra

[
1 + B + ∂

∂z
(ϑ + c)

]
+ 1

Pr

(
∂ψ

∂z

∂ϕ

∂x
− ∂ψ

∂x

∂ϕ

∂z

)
, �ψ = −ϕ

∂ϑ

∂t
= 1

Pr

(
�ϑ +

(
∂ψ

∂z

∂ϑ

∂x
− ∂ψ

∂x

∂ϑ

∂z

)
− ∂ψ

∂x

)

∂c

∂t
= 1

Le Pr
(�c − ε�ϑ) + 1

Pr

((
∂ψ

∂z

∂c

∂x
− ∂ψ

∂x

∂c

∂z

)
− B

∂ψ

∂x

)

x = ±1: ψ = ∂ψ

∂x
= 0,

∂ϑ

∂x
= ∂c

∂x
= 0 (12)

On vertical boundaries of the cell, the periodicity conditions were imposed for ψ , ϕ , ϑ , c.
The problem (12) was solved by the finite difference method. The central differences were used for approximating spatial

derivatives. The Poisson equation at each time step was solved by successive iterations of the over-relaxation method. The
calculations were performed for the cell of plane horizontal layer whose length was taken equal to the wavelength of the
most dangerous perturbations according to the results of the linear stability analysis. Periodicity conditions were imposed
at the vertical boundaries of the cell. We used the uniform mesh with square cells. The mesh size in the main calculations
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Fig. 5. Dependence of the maximal value of the stream function of the Rayleigh number for stationary flows at Pr = 0.01, Le = 1000, ε = −0.5.

was taken to be 1/30 (this step was chosen on the basis of the results of test calculations performed with different mesh
sizes, and to control the convergence of the results with the mesh refinement).

In Fig. 5, the dependence of the maximal value of the stream function in the cavity on the Rayleigh number is shown
for stationary flows at Pr = 0.01, Le = 1000, ε = −0.5. According to the results of the linear stability analysis, the stationary
advective flow becomes unstable, for these parameter values, to plane monotonous cellular hydrodynamic perturbations at
Ra = Racm ≈ 5.09 (see Fig. 2, curve 1). As seen in Fig. 5, the results of nonlinear calculations agree well with the results of
linear stability analysis: at values of the Rayleigh number smaller than Racm, the dependence ψm(Ra) is nearly linear and at
Ra ≈ Racm a new solution branches from this line with a square-root law.

8. Conclusions

The calculations carried out for three different binary mixtures showed that, for the positive Soret effect, ε > 0 at small
values of the Prandtl number and large values of the Lewis number, which is typical of liquid metal binary melts, whereas
the effect of thermodiffusion on the stability of a steady flow is weak, and that, at Lewis and Prandtl number values of
the order of unity, thermodiffusion has a significant stabilizing effect. In all considered cases, thermodiffusion leads to
non-uniqueness of the stationary solution. There is the range of ε values where the three branches of stationary solutions
exist simultaneously. For the upper branch of stationary solutions, there is instability to the same modes as in the case
of the positive Soret effect; however, the most dangerous is the long-wave monotonous spiral mode, the origin of which
is associated with thermodiffusion. The middle branch of stationary solutions is always unstable and the lower branch is
unstable at ε < −1 and Rayleigh number values lower that certain critical value Racm. The numerical solution of the full
nonlinear problem shows that, for Rayleigh number values less than Racm, the dependence of the maximal value of the
stream function on the Rayleigh number is close to linear, and at Ra ≈ Racm a new solution branches from this line with a
square-root law.
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