24 research outputs found

    Evaluation of an automated method for arterial input function detection for first-pass myocardial perfusion cardiovascular magnetic resonance

    Get PDF
    ABSTRACT: Background: Quantitative assessment of myocardial blood flow (MBF) with first-pass perfusion cardiovascular magnetic resonance (CMR) requires a measurement of the arterial input function (AIF). This study presents an automated method to improve the objectivity and reduce processing time for measuring the AIF from first-pass perfusion CMR images. This automated method is used to compare the impact of different AIF measurements on MBF quantification.Methods: Gadolinium-enhanced perfusion CMR was performed on a 1.5 T scanner using a saturation recovery dual-sequence technique. Rest and stress perfusion series from 270 clinical studies were analyzed. Automated image processing steps included motion correction, intensity correction, detection of the left ventricle (LV), independent component analysis, and LV pixel thresholding to calculate the AIF signal. The results were compared with manual reference measurements using several quality metrics based on the contrast enhancement and timing characteristics of the AIF. The median and 95 % confidence interval (CI) of the median were reported. Finally, MBF was calculated and compared in a subset of 21 clinical studies using the automated and manual AIF measurements.Results: Two clinical studies were excluded from the comparison due to a congenital heart defect present in one and a contrast administration issue in the other. The proposed method successfully processed 99.63 % of the remaining image series. Manual and automatic AIF time-signal intensity curves were strongly correlated with median correlation coefficient of 0.999 (95 % CI [0.999, 0.999]). The automated method effectively selected bright LV pixels, excluded papillary muscles, and required less processing time than the manual approach. There was no significant difference in MBF estimates between manually and automatically measured AIFs (p = NS). However, different sizes of regions of interest selection in the LV cavity could change the AIF measurement and affect MBF calculation (p = NS to p = 0.03).Conclusion: The proposed automatic method produced AIFs similar to the reference manual method but required less processing time and was more objective. The automated algorithm may improve AIF measurement from the first-pass perfusion CMR images and make quantitative myocardial perfusion analysis more robust and readily available

    Human SCARB2-Mediated Entry and Endocytosis of EV71

    Get PDF
    Enterovirus (EV) 71 infection is known to cause hand-foot-and-mouth disease (HFMD) and in severe cases, induces neurological disorders culminating in fatality. An outbreak of EV71 in South East Asia in 1997 affected over 120,000 people and caused neurological disorders in a few individuals. The control of EV71 infection through public health interventions remains minimal and treatments are only symptomatic. Recently, human scavenger receptor class B, member 2 (SCARB2) has been reported to be a cellular receptor of EV71. We expressed human SCARB2 gene in NIH3T3 cells (3T3-SCARB2) to study the mechanisms of EV71 entry and infection. We demonstrated that human SCARB2 serves as a cellular receptor for EV71 entry. Disruption of expression of SCARB2 using siRNAs can interfere EV71 infection and subsequent inhibit the expression of viral capsid proteins in RD and 3T3-SCARB2 but not Vero cells. SiRNAs specific to clathrin or dynamin or chemical inhibitor of clathrin-mediated endocytosis were all capable of interfering with the entry of EV71 into 3T3-SCARB2 cells. On the other hand, caveolin specific siRNA or inhibitors of caveolae-mediated endocytosis had no effect, confirming that only clathrin-mediated pathway was involved in EV71 infection. Endocytosis of EV71 was also found to be pH-dependent requiring endosomal acidification and also required intact membrane cholesterol. In summary, the mechanism of EV71 entry through SCARB2 as the receptor for attachment, and its cellular entry is through a clathrin-mediated and pH-dependent endocytic pathway. This study on the receptor and endocytic mechanisms of EV71 infection is useful for the development of effective medications and prophylactic treatment against the enterovirus

    The mediating effects of first call resolution on call centers’ performance

    Get PDF
    This article aims to examine and validate the prepositions of the mediating impacts of first call resolution (FCR) on caller satisfaction within the contact center industry.A survey of 168 call center managers was analyzed through structural equation modeling, constituting an overall 43.3 per cent response rate for this study.The results show that FCR positively mediates the relationship between knowledge management, technology-based CRM and caller satisfaction within the inbound customer contact centers.We have empirically assessed call centers/contact centers’ success through caller satisfaction (an observed variable through their 2009 customer survey in Malaysia).Consequently, this study cannot generalize its findings in all other countries.Our strong argument is that within the operational variables, FCR is statistically significant and positively mediates knowledge management applications. But very important to note is that the customer contact centers are first touch points to a company's goods or services, and that many other factors such as product quality, company policy, target markets, decision-making processes and so on are also determinants of caller satisfaction, but fall outside the operational control of contact center activities.This research has empirically established that a company's capability in effectively acquiring a valid understanding of its current and potential customers’ information through CRM technologies will positively impact its acquisitions, customization, management and retention of customers.It also avails both the academic and contact center management the benefits that are inherent in measuring the impact of knowledge management and technology-based CRM on inbound FCR and caller satisfaction.This study finally recommends alternative areas for future research

    Identification of an orphan guanylate cyclase receptor selectively expressed in mouse testis.

    No full text
    We have identified a novel membrane form of guanylate cyclase (GC) from a mouse testis cDNA library and termed it mGC-G (mouse GC-G) based on its high sequence homology to rat GC-G. It encodes a potential type I transmembrane receptor, with the characteristic domain structure common to all members of the family of membrane GCs, including an extracellular, putative ligand-binding domain, a single membrane-spanning segment and cytoplasmic protein kinase-like and cyclase catalytic domains. Real-time quantitative reverse transcriptase--PCR and Northern-blot analyses showed that mGC-G is highly and selectively expressed in mouse testis. Phylogenetic analysis based on the extracellular protein sequence revealed that mGC-G is closely related to members of the subfamily of natriuretic peptide receptor GCs. When overexpressed in HEK-293T cells (human embryonic kidney 293T cells) or COS-7 cells, mGC-G manifests as a membrane-bound glycoprotein, which can form either homomeric or heteromeric complexes with the natriuretic peptide receptor GC-A. It exhibits marked cGMP-generating GC activity; however, notably, all ligands known to activate other receptor GCs failed to stimulate enzymic activity. The unique testis-enriched expression of mGC-G, which is completely different from the broader tissue distribution of rat GC-G, suggests the existence of as-yet-unidentified ligands and unappreciated species-specific physiological functions mediated through mGC-G/cGMP signalling in the testis
    corecore