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Abstract

Background: Microvascular dysfunction in HCM has been associated with adverse clinical outcomes. Advances in
quantitative cardiovascular magnetic resonance (CMR) perfusion imaging now allow myocardial blood flow to be
quantified at the pixel level. We applied these techniques to investigate the spectrum of microvascular dysfunction
in hypertrophic cardiomyopathy (HCM) and to explore its relationship with fibrosis and wall thickness.

Methods: CMR perfusion imaging was undertaken during adenosine-induced hyperemia and again at rest in 35
patients together with late gadolinium enhancement (LGE) imaging. Myocardial blood flow (MBF) was quantified
on a pixel-by-pixel basis from CMR perfusion images using a Fermi-constrained deconvolution algorithm.
Regions-of-interest (ROI) in hypoperfused and hyperemic myocardium were identified from the MBF pixel maps.
The myocardium was also divided into 16 AHA segments.

Results: Resting MBF was significantly higher in the endocardium than in the epicardium (mean ± SD: 1.25 ±
0.35 ml/g/min versus 1.20 ± 0.35 ml/g/min, P < 0.001), a pattern that reversed with stress (2.00 ± 0.76 ml/g/min
versus 2.36 ± 0.83 ml/g/min, P < 0.001). ROI analysis revealed 11 (31%) patients with stress MBF lower than resting
values (1.05 ± 0.39 ml/g/min versus 1.22 ± 0.36 ml/g/min, P = 0.021). There was a significant negative association
between hyperemic MBF and wall thickness (β = −0.047 ml/g/min per mm, 95% CI: −0.057 to −0.038, P < 0.001) and
a significantly lower probability of fibrosis in a segment with increasing hyperemic MBF (odds ratio per ml/g/min:
0.086, 95% CI: 0.078 to 0.095, P = 0.003).

Conclusions: Pixel-wise quantitative CMR perfusion imaging identifies a subgroup of patients with HCM that have
localised severe microvascular dysfunction which may give rise to myocardial ischemia.

Keywords: Hypertrophic cardiomyopathy, Perfusion, Cardiovascular magnetic resonance, Microvascular dysfunction,
Sudden cardiac death
* Correspondence: araia@nih.gov
†Equal contributors
3Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and
Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
Full list of author information is available at the end of the article

© 2014 Ismail et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

https://core.ac.uk/display/193687641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:araia@nih.gov
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Ismail et al. Journal of Cardiovascular Magnetic Resonance 2014, 16:49 Page 2 of 10
http://jcmr-online.com/content/16/1/49
Background
Hypertrophic cardiomyopathy is a common inherited
heart muscle disease which can lead to premature sudden
cardiac death (SCD) or to progressive heart failure in a
subset of patients [1-3]. Coronary microvascular ischemia
has been implicated in the pathogenesis of replacement fi-
brosis [4,5], which in turn has been associated with ad-
verse outcomes [6-13]. However, myocardial replacement
fibrosis is characteristically found in the mid-wall [14],
whereas perfusion abnormalities are thought to preferen-
tially affect the endocardium [15]. Varnava et al. found a
poor correspondence between the distribution of small
vessel disease and fibrosis on post-mortem histology [16].
The precise relationship between fibrosis and myocardial
ischemia therefore remains unresolved.
Cardiovascular magnetic resonance (CMR) allows the

non-invasive assessment of myocardial blood flow and re-
placement fibrosis without the use of ionising radiation
[17]. Only one study to date has utilised multi-parametric
CMR to quantitatively evaluate the relationship between
perfusion abnormalities, left ventricular (LV) wall thick-
ness, and fibrosis [18]. In keeping with previous studies
that used positron emission tomography (PET) for the ab-
solute quantification of myocardial blood flow (MBF), this
study assessed perfusion using a sector-based approach
[19-22]. This strategy creates territories that are of rele-
vance for assessing epicardial coronary disease but which
are arbitrary from a microcirculatory perspective. The use
of a sector-based or global approach alone whilst improv-
ing signal-to-noise, may mask or significantly under-
estimate the local severity of perfusion defects due to
coronary microvascular dysfunction [23]. This is of par-
ticular importance as the burden and severity of ischemia
may be of prognostic importance as a mechanism leading
to myocardial fibrosis, and independently as a trigger for
ventricular arrhythmia [19,24].
We have previously shown that first-pass gadolinium-

enhanced CMR stress perfusion imaging allows the
pixel-wise quantification of absolute MBF with high fi-
delity and spatial resolution [23]. We applied these
pixel-level techniques to explore the severity of perfu-
sion abnormalities in HCM and to assess their relation-
ship to fibrosis and local wall thickness.

Methods
Study population
Thirty-six patients with HCM referred for CMR at the
Royal Brompton Hospital were studied. HCM was diag-
nosed in accordance with standard clinical guidelines
[25]. Patients were excluded if they had: conditions as-
sociated with coronary microvascular dysfunction such
as diabetes; significant epicardial coronary artery disease
on angiography (defined as >50% diameter stenosis in a
major coronary artery); previous gradient reduction
therapy; contraindications to CMR, adenosine, or
gadolinium-based contrast agents. The study was ap-
proved by the National Research Ethics Service and was
conducted in accordance with the principles set out in the
declaration of Helsinki, with written informed consent ob-
tained from all patients.

Image acquisition
All patients were asked to abstain from caffeine-containing
beverages or drugs for 24 hours prior to imaging and
from β-blockers and rate-limiting calcium channel an-
tagonists for 48 hours prior to imaging. Images were
acquired using a dedicated 1.5 T scanner with a twelve-
channel phased-array receiver coil (Siemens Magnetom
Avanto, Siemens AG Healthcare Sector, Erlangen, Germany).
A retrospectively-gated balanced steady-state free-precession
sequence was used to obtain breath-hold cine images in
three long-axis planes, followed by a contiguous stack of
short axis slices from the atrioventricular ring to the apex
[26]. The end-systolic frames of the long-axis cine images
were used to plan the acquisition of three short axis per-
fusion images to cover the base, mid-LV and the apex.
Adenosine was infused at 140 mcg/kg/min for a minimum
of 4 minutes to achieve hyperemia. After measurement
of heart rate and blood pressure at peak stress, gadolin-
ium contrast (Gadovist, Bayer-Schering, Berlin, Germany,
0.1 mmol/kg) was rapidly injected at 3.5 ml/s, followed by
15 ml saline at 7 ml/s using a power injector (Medrad UK,
Ely, Cambridgeshire, UK) to ensure a compact bolus en-
tered the heart. A saturation-recovery prepared dual-
sequence approach with center-out hybrid echoplanar
imaging (EPI) [27] was used for perfusion imaging with
the following typical sequence parameters: fat saturation
pulse, composite 90° saturation preparation pulse for each
slice [28], 28° readout pulse, saturation recovery time to
central raw data acquisition 90 ms, repetition time 5.1 ms,
echo time 1.1 ms, echo train length 4, field of view 360 ×
288 mm, base resolution 160 × 160, slice thickness 8 mm.
The center frequency of the scanner electronics was
manually tuned to water in a 10 × 10 × 10 cm volume
encompassing the LV to optimise both fat suppression
and center-out hybrid-EPI image quality [29]. The arterial
input function slice used low-resolution fast low-angle
shot (FLASH) imaging with an adiabatic B1-insensitive ro-
tation type 4 saturation pulse [30].
Three short axis images and an image at the basal slice

of the arterial input function were acquired every cardiac
cycle for a minimum of 50 cycles. Two initial proton
density-weighted images were acquired prior to the ar-
rival of contrast as part of perfusion imaging and were
used for subsequent surface coil intensity correction.
After ~10 min, late gadolinium enhancement (LGE) im-
ages were acquired with an inversion recovery-prepared
segmented turbo FLASH sequence [31]. Inversion times
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were optimised to null normal myocardium with images
repeated in two orthogonal phase-encoding directions to
exclude artifact. After a minimum of 30 minutes, rest
perfusion imaging was carried out at the same slice
positions.

Image analysis
Ventricular volumes, function, mass, and ejection frac-
tion were measured using a semi-automated threshold-
based technique (CMRtools, Cardiovascular Imaging
Solutions, London). All volume and mass measurements
were indexed to body surface area [32]. End-diastolic
LV wall thickness was determined for each of the 17
American Heart Association (AHA) segments excluding
the apex [33]. Late enhancement was dichotomously
assessed for each segment by an expert reader blinded to
the perfusion data and considered to be present if there
was an area of high signal intensity on a background of ad-
equately nulled myocardium present in two orthogonal
phase-encoding directions [12].

Perfusion analysis
Absolute MBF was quantified pixel-wise at rest and at peak
stress as outlined in Figure 1 and as previously described
[23]. In brief, endocardial and epicardial borders of the LV
myocardium were manually traced using Argus CMR soft-
ware (Syngo, Siemens Healthcare, Erlangen, Germany) to
define myocardial regions-of-interest (ROI). Custom image
processing software developed in the Interactive Data
Language (Exelis Visual Information Solutions, Boulder,
Colorado, USA) was used to correct surface coil-intensity
bias and motion artifacts for each image series to ensure
frame-to-frame correspondence of pixels. MBF was then
quantified pixel-wise using model-constrained deconvolu-
tion as previously validated [23].
To avoid potential underestimation of the severity of

perfusion defects in a sector-wise analysis, ROI analysis
was performed using the MBF pixel maps to compare
Figure 1 Summary of the steps involved in pixel-wise perfusion quan
hypoperfused areas and remote hyperemic areas at stress
to corresponding areas at rest. Hypoperfused areas were
defined as areas which visually appeared to have the worst
perfusion on stress perfusion pixel maps. Based on the
minimum myocardial perfusion reserve index (MPRI =
stress MBF/rest MBF) as measured from these ROI, the
cohort was divided into two groups for further compari-
son: severe microvascular dysfunction (defined as mini-
mum MPRI < 1.0) and non-severe groups (minimum
MPRI ≥ 1.0).
To assess the relationship between perfusion, wall thick-

ness, and the presence of late enhancement, the myocar-
dium was also divided into 16 segments according to the
17-segment AHA model, omitting the apex. Segments
were further divided into endocardial and epicardial layers
to assess for transmural perfusion gradients [33]. Perfusion
in areas of LGE was also compared with that in remote
areas free of enhancement.

Statistical analysis
Continuous variables are expressed as mean ± standard
deviation (SD) for normally distributed variables and as
medians with interquartile ranges for non-parametric data.
The Kolmogorov-Smirnov test was used together with
histograms to assess the normality of continuous data. Dif-
ferences between parametric continuous variables were
assessed using Student’s t-test, and for non-parametric
data, the Mann–Whitney U-test. Categorical data are pre-
sented as frequencies and percentages. Differences be-
tween categorical variables were assessed using the χ2 and
Fisher’s exact tests as appropriate.
To take into account correlation of repeated measure-

ments and clustering of data from ROI and sectors
within slices and patients, the perfusion data was ana-
lysed using a multilevel linear mixed effects model with
patients treated as a random intercept. The relationship
between the presence of LGE and perfusion was assessed
using binary logistic regression together with a mixed
tification and analysis.
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effects multilevel generalised linear model. Two-tailed
values of P < 0.05 were considered significant. Statistical
analysis was performed using Stata SE Version 12 (Stata-
Corp, College Station, Texas, USA).
Results
Study population
The final study cohort was comprised of 35 patients
(Table 1). One patient was excluded due to an inad-
equate vasodilator response to adenosine, which on fur-
ther questioning was due to caffeine ingestion, leaving a
final cohort of 35 patients. In response to adenosine,
resting heart rate rose from a mean of 69.7 ± 10.3 to
92.6 ± 13.6 beats per minute with a small fall in mean ar-
terial pressure from 94.8 ± 11.7 to 90.3 ± 11.0 mmHg. Six
out of 560 segments were excluded from analysis due to
imaging artifact, encroachment of the left ventricular
outflow tract on the basal slice, or problems with surface
coil intensity normalisation. Overall, 99 segments had
LGE.
Table 1 Baseline clinical and demographic characteristics of t
absence of severe microvascular dysfunction

Non-severe

Characteristic – n (%) 24 (68.6)

Median age – years (IQR) 58.9 (52.3, 67.5)

Male sex – n (%) 18 (75.0)

Apical phenotype – n (%) 4 (16.7)

Risk factors for SCD

Sustained VT/VF – n (%) 0 (0)

Family history of SCD – n (%) 2 (8.3)

Wall thickness ≥30 mm – n (%) 1 (4.2)

Resting LVOT obstruction ≥30 mmHg – n (%) 1 (4.2)

Non-sustained VT – n (%) 3 (12.5)

Unexplained syncope – n (%) 3 (12.5)

Number of risk factors for SCD – n (%)

0 14 (58.3)

1 10 (41.7)

2+ 0 (0.0)

NYHA functional class – n (%)

I 16 (66.7)

II 8 (33.3)

III 0 (0)

IV 0 (0)

Medications at baseline – n (%)

β-blocker 14 (58.3)

Ca2+-channel blocker 0 (0)

QR= Interquartile Range; SCD = Sudden Cardiac Death; VT = Ventricular Tachycardia; VF
Heart Association.
Examples of perfusion pixel maps for the severe
microvascular dysfunction and the non-severe patients
are presented in Figure 2. Based on ROI analysis of the
most significant perfusion defects seen in each patient,
11 (31.4%) patients showed evidence of severe micro-
vascular dysfunction. There were no significant differ-
ences between the severe and non-severe groups with
respect to baseline clinical and demographic features, al-
though there was a trend towards a higher incidence of
left ventricular outflow tract obstruction amongst those
with severe microvascular dysfunction (Table 1). How-
ever, with respect to the CMR findings, the maximum
end-diastolic wall thickness was significantly higher in
the severe microvascular dysfunction patients versus the
non-severe patients (Table 2).

Severity of perfusion abnormalities
ROI analysis of hypoperfused areas in the severe micro-
vascular dysfunction patients (Figure 3A) revealed that
mean resting MBF was significantly lower in hypoper-
fused areas relative to remote areas from the same slices
he study cohort stratified according to the presence/

Severe All patients

11 (31.4) 35 P value

52.0 (42.5, 63.6) 57.1 (48.5, 66.6) 0.256

7 (63.6) 25 (71.4) 0.490

2 (18.2) 6 (17.1) 0.912

1 (9.1) 1 (2.9) 0.134

1 (9.1) 3 (8.6) 0.941

1 (9.1) 2 (5.7) 0.560

3 (27.3) 4 (11.4) 0.046

0 (0) 3 (8.6) 0.220

1 (9.1) 4 (11.4) 0.769

5 (45.5) 19 (54.3) 0.296

5 (45.5) 15 (42.9)

1 (9.1) 1 (2.9)

8 (72.7) 24 (68.6) 0.720

3 (27.3) 11 (31.4)

0 (0) 0 (0)

0 (0) 0 (0)

6 (54.6) 20 (57.1) 0.833

1 (9.1) 1 (2.9) 0.134

= Ventricular Fibrillation; LVOT = Left Ventricular Outflow Tract; NYHA =New York



Figure 2 Examples of results of pixel-wise quantitative first-pass cardiovascular magnetic resonance perfusion imaging (ml/g/min) for
(A) severe microvascular dysfunction and (B) non-severe patients. Stress images are shown on the top row and rest images on the bottom
row for identical basal, mid-ventricular and apical slices together with their corresponding pixel maps.
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(1.22 ± 0.36 ml/g/min versus 1.39 ± 0.34 ml/g/min, P <
0.001). After stress, whereas MBF rose significantly in
the remote areas (1.39 ± 0.34 ml/g/min rising to 2.60 ±
0.57 ml/g/min, P < 0.001), stress MBF in hypoperfused
ROI in patients with severe microvascular dysfunction not
only failed to rise, but fell significantly from baseline
values (1.22 ± 0.36 ml/g/min falling to 1.05 ± 0.39 ml/g/
min, P = 0.021). In contrast, for the non-severe patients
Table 2 Baseline cardiovascular magnetic resonance findings
absence of severe microvascular dysfunction

Non-severe

CMR parameters – n (%) 24 (68.6)

Maximum end-diastolic wall thickness – mm 18.9 ± 4.5

LV-EDV index – ml/m2 68.5 ± 15.1

LV-ESV index – ml/m2 19.5 ± 7.9

LV ejection fraction – % 72.0 ± 8.3

LV mass index – g/m2 93.6 ± 24.9

All values mean ± SD. CMR = Cardiovascular Magnetic Resonance; LV = Left Ventricu
(Figure 3B), there was a significant rise in mean MBF with
stress, even in the hypoperfused areas (1.05 ± 0.28 ml/g/
min rising to 1.87 ± 0.45 ml/g/min, P < 0.001). ROI ana-
lysis in both groups showed significant hyperemic re-
sponses in regions remote from perfusion defects (1.39 ±
0.34 ml/g/min rising to 2.60 ± 0.57 ml/g/min, P < 0.001;
and 1.20 ± 0.31 ml/g/min rising to 2.74 ± 0.85 ml/g/min,
P < 0.001, respectively). The ratio of the minimum MPRI
for the study cohort stratified according to the presence/

Severe All patients

11 (31.4) 35 P value

22.2 ± 4.0 19.9 ± 4.6 0.048

64.3 ± 10.5 67.2 ± 13.8 0.419

17.2 ± 6.1 18.8 ± 7.4 0.393

73.8 ± 6.5 72.5 ± 7.7 0.515

103.4 ± 30.0 96.7 ± 26.6 0.318

lar; EDV = End-diastolic volume; ESV = End-systolic volume.



Figure 3 Mean myocardial blood flow (MBF) at rest and stress
for hypoperfused and remote regions of myocardium for the
(A) severe microvascular dysfunction and (B) non-severe patients.

Figure 4 Myocardial perfusion reserve index (MPRI) in the
severe and non-severe microvascular dysfunction groups for
the most-hyperemic transmural segments, sub-epicardial, and
sub-endocardial sub-sectors.
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for hypoperfused areas to the maximum MPRI in remote
regions was significantly lower in the severe microvascular
dysfunction patients at 0.31 ± 0.10 versus 0.58 ± 0.16 in
the non-severe group (P < 0.001).

Transmural distribution of blood flow in response to
vasodilator stress
Adenosine achieved hyperemia, with MBF rising signifi-
cantly between rest and stress. When considering the most
normal sectors in each of the patients, the mean MPRI
was significantly lower in the severe versus non-severe
patients for sectors as a whole and in endocardial sub-
sectors, with a trend towards significance in the epicar-
dium (Figure 4). When comparing the 16 segments in all
the patients, MBF rose significantly with stress in whole
sectors (1.22 ± 0.34 ml/g/min rising to 2.22 ± 0.76 ml/g/
min, P < 0.001) and in both endocardial and epicardial sub-
sectors (1.25 ± 0.35 ml/g/min rising to 2.00 ± 0.76 ml/g/
min, P < 0.001; and 1.20 ± 0.35 ml/g/min rising to 2.36 ±
0.83 ml/g/min, P < 0.001, respectively). At rest, endocardial
MBF was significantly higher than epicardial MBF (1.25 ±
0.35 ml/100 g/min versus 1.20 ± 0.35 ml/g/min, P < 0.001)
with an endocardial to epicardial MBF ratio of 1.05 ± 0.11.
However, at stress, this pattern was reversed with endo-
cardial MBF increasing significantly less than epicardial
MBF (2.00 ± 0.76 ml/g/min versus 2.36 ± 0.83 ml/g/min,
P < 0.001) giving a ratio of 0.85 ± 0.18. The more blunted
hyperemic response in the endocardium relative to the
epicardium was also reflected by a significantly lower
mean MPRI (1.68 ± 0.65 versus 2.06 ± 0.73, P < 0.001
respectively).
Perfusion and LV wall thickness
There was no significant relationship between resting
MBF and sector end-diastolic wall thickness. However, at
stress, there was a negative correlation between the two
(β = −0.047 ml/g/min per mm, 95% confidence interval
[CI]: −0.057 to −0.038, P < 0.001) with similar falls in the
endocardium and the epicardium (β=−0.048 ml/g/min per
mm, 95% CI: −0.058 to −0.039, P < 0.001 and β=−0.048 ml/
g/min per mm, 95% CI: −0.058 to −0.038, P < 0.001,
respectively).
Perfusion and late gadolinium enhancement
Segments with LGE were significantly associated with
lower perfusion at rest (odds ratio [OR] per ml/g/min in-
crease in MBF: 0.086, 95% CI: 0.078 to 0.095, P = 0.003).
This relationship remained consistent at stress (OR: 0.086,
95% CI: 0.081 to 0.092, P < 0.001) and when examined in
relation to MPRI (OR: 0.053, 95% CI 0.032 to 0.089, P =
0.015). Both rest and stress MBF appeared to be signi-
ficantly lower in segments with LGE relative to those
without (Figure 5A), resulting in a significant difference
in MPRI between segments with and without LGE (MPRI:
1.80 ± 0.74 versus 1.92 ± 0.64, P < 0.001 respectively).



Figure 5 Mean myocardial blood flow (MBF) in (A) segments
and (B) regions of interest (ROI) with and without late gadolinium
enhancement (LGE).
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However, these differences did not persist after adjust-
ing for differences in wall thickness.
ROI analysis on pixel-level perfusion maps revealed a

similar, yet stronger trend of reduced MBF when com-
paring areas of LGE to remote areas free of LGE. This
trend was observed for both rest and stress (Figure 5B).
As a result, the MPRI was significantly lower in ROI with
LGE than in remote areas (1.61 ± 0.65 versus 1.92 ± 0.54,
P < 0.001).

Discussion
We found evidence of widespread microvascular dysfunc-
tion in a cohort of patients with HCM being studied
with multiparametric CMR. To our knowledge, this is the
first study to assess stress myocardial perfusion in HCM
with CMR using pixel-wise quantification techniques. This
allowed us to examine perfusion abnormalities at an un-
precedented level of detail. In a subset of patients, pixel-
wise analysis revealed regions with not only a blunted or
inadequate hyperemic response to vasodilator stress, but
evidence of severe microvascular dysfunction that is likely
to result in ischemia, with stress MBF levels below those
of rest perfusion.
In keeping with earlier work, we found that resting

endocardial MBF was significantly higher than epicardial
MBF [18]. This may reflect the higher systolic wall tension
and consequent higher metabolic requirements experi-
enced by the endocardium [34,35]. However, this trans-
mural gradient of perfusion reversed with vasodilator stress
to the detriment of the endocardium. The transmural re-
distribution of perfusion with stress is likely to be due to a
combination of the effects of abnormal vascular resistance
secondary to arteriolar medial hypertrophy and intimal
hyperplasia; higher extravascular compressive forces within
the endocardium; and abnormal autoregulation in response
to vasodilator stress [34,36,37]. In support of this, as in
Petersen et al. [18], we noted a significant relationship be-
tween wall thickness and perfusion, however, abnormal-
ities in perfusion were also found in areas with normal
wall thickness suggesting that abnormalities in vascular
structure and vasomotor function may play a pre-eminent
role in the genesis of microvascular ischemia in HCM
[18,38,39]. This is in contrast to the situation with second-
ary LVH where extravascular factors may play a more pre-
dominant role [15,40].
High spatial resolution non-invasive first-pass perfusion

CMR techniques therefore provided valuable insights into
transmural patterns of MBF, which have hitherto only
been possible using microspheres, restricting such work to
research in animal models [41].
Layer or sector-based analysis of MBF responses to ad-

enosine in HCM, both in the present study and in previ-
ous work, have revealed markedly impaired vasodilator
reserve. In contrast to previous work [18], pixel-wise
analysis revealed evidence of severe microvascular dys-
function in hypoperfused areas, with MBF at stress actu-
ally falling below baseline resting values. This implies
that there are regions in which structural abnormalities
in the microvasculature and abnormal vasomotion en-
gender vulnerability or lead to frank ischemia.
Severe microvascular dysfunction was identified only in

31% of patients, potentially identifying a higher risk sub-
group of patients at risk of future adverse cardiac events.
In a similar cohort of low risk and minimally symptomatic
HCM patients, using PET perfusion imaging, Cecchi et al.
identified a stress MBF of 1.10 ml/g/min as the threshold
best predictive of future risk [19]. Intriguingly, the mean
stress MBF of patients with severe microvascular dysfunc-
tion in the present study was 1.05 ml/g/min and the
prevalence of severe microvascular dysfunction mirrored
the rate of adverse cardiac events observed over long-term
clinical follow-up by Cecchi et al. [19].
Myocardial ischemia has been proposed as a progeni-

tor of replacement fibrosis which can be detected by the
LGE technique and on histology [4,6]. In keeping with the
findings of Petersen et al. [18], and work by Sogtia et al.
using PET-perfusion imaging in concert with LGE-CMR
[22], we found a strong inverse association between the
presence of LGE and hyperemic MBF both with ROI and
sector-based analyses. In contrast to Petersen et al. but in
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agreement with Knaapen et al. [21], we also found reduc-
tions in resting MBF in sectors with LGE. However, nei-
ther stress nor rest differences persisted after adjusting for
differences in wall thickness. Thus, while there is a strong
association between impaired hyperemic MBF and the
presence of LGE, this may be confounded by local disease
severity as indirectly reflected by local wall thickness. On
histology, Varnava et al. found a poor interrelationship be-
tween myocardial fibrosis, small vessel disease and dis-
array [16]. These findings are also in accord with those of
Tyan et al. who semi-quantitatively assessed the distribu-
tion of perfusion abnormalities and tissue injury using
CMR [42]. The absence of a dose–response relationship
between reduced hyperemic MBF and the observed spatial
distribution of LGE suggests that factors other than or
beyond ischemia must be implicated in the pathogenesis
of replacement fibrosis in HCM. Although the sub-
endocardium is most severely affected by microvascular
ischemia, paradoxically, the overwhelming preponderance
of LGE is seen in a mid-wall distribution, typically sparing
the sub-endocardium [14,43]. This implies that factors be-
yond microvascular ischemia, possibly under genetic or
epigenetic control significantly modulate the development
of replacement fibrosis in HCM. Further work is required
to delineate the interrelationships of fibrosis and micro-
vascular dysfunction in-vivo, and in particular, their
temporal relationship.

Limitations
The population studied was drawn from referrals to our
clinical service which is a tertiary center, leading to poten-
tial selection bias towards higher risk cases. However, pa-
tients with implantable cardioverter defibrillators (ICDs)
who have been deemed high risk will have been excluded
due to the contraindication of CMR in this group poten-
tially counterbalancing this. In addition, 97% of patients
had 0 or only 1 risk factor for SCD.
Myocardial fibrosis was assessed using the LGE tech-

nique. Whilst this detects replacement fibrosis, it does not
allow the quantification of interstitial fibrosis [44]. The
association between fibrosis and perfusion abnormalities
may therefore have been underappreciated. Nevertheless,
replacement fibrosis is thought to be driven by ischemic
necrosis and is the distinct type of fibrosis that has been
most clearly associated with myocardial ischemia in HCM
[4,5,24]. Future developments in interstitial imaging using
T1-mapping techniques may allow the relationship be-
tween interstitial fibrosis, total fibrotic burden and perfu-
sion to be addressed [44].
Finally, we were unable to determine the prognostic

significance of our findings given our limited sample size
and the relatively low event rate seen in HCM [45].
Nevertheless, our finding of severe microvascular dys-
function in a subgroup of patients with HCM warrants
further investigation to determine the potential utility of
this phenomenon for risk stratification.

Conclusions
In summary, coronary microvascular dysfunction is a
common finding in HCM and is associated with increas-
ing wall thickness and with the presence of LGE. Fully
quantitative pixel-wise first-pass CMR perfusion imaging
identifies a significant number of patients with localised
severe microvascular dysfunction that is likely to result
in ischemia. Further work is required to determine if this
phenomenon heralds an increased risk of future adverse
cardiovascular events.
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