39 research outputs found
An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement
The QCD phase diagram lies at the heart of what the RHIC Physics Program is
all about. While RHIC has been operating very successfully at or close to its
maximum energy for almost a decade, it has become clear that this collider can
also be operated at lower energies down to 5 GeV without extensive upgrades. An
exploration of the full region of beam energies available at the RHIC facility
is imperative. The STAR detector, due to its large uniform acceptance and
excellent particle identification capabilities, is uniquely positioned to carry
out this program in depth and detail. The first exploratory beam energy scan
(BES) run at RHIC took place in 2010 (Run 10), since several STAR upgrades,
most importantly a full barrel Time of Flight detector, are now completed which
add new capabilities important for the interesting physics at BES energies. In
this document we discuss current proposed measurements, with estimations of the
accuracy of the measurements given an assumed event count at each beam energy.Comment: 59 pages, 78 figure
Cytokine-directed cellular cross-talk imprints synovial pathotypes in rheumatoid arthritis
Introduction: Structural reorganisation of the synovium with expansion of fibroblast-like synoviocytes (FLS) and influx of immune cells is a hallmark of rheumatoid arthritis (RA). Activated FLS are increasingly recognised as a critical component driving synovial tissue remodelling by interacting with immune cells resulting in distinct synovial pathotypes of RA.
Methods: Automated high-content fluorescence microscopy of co-cultured cytokine-activated FLS and autologous peripheral CD4+ T cells from patients with RA was established to quantify cell–cell interactions. Phenotypic profiling of cytokine-treated FLS and co-cultured T cells was done by flow cytometry and RNA-Seq, which were integrated with publicly available transcriptomic data from patients with different histological synovial pathotypes. Computational prediction and knock-down experiments were performed in FLS to identify adhesion molecules for cell–cell interaction.
Results: Cytokine stimulation, especially with TNF-α, led to enhanced FLS-T cell interaction resulting in cell-cell contact-dependent activation, proliferation and differentiation of T cells. Signatures of cytokine-activated FLS were significantly enriched in RA synovial tissues defined as lymphoid-rich or leucocyte-rich pathotypes, with the most prominent effects for TNF-α. FLS cytokine signatures correlated with the number of infiltrating CD4+ T cells in synovial tissue of patients with RA. Ligand-receptor pair interaction analysis identified ICAM1 on FLS as an important mediator in TNF-mediated FLS-T cell interaction. Both, ICAM1 and its receptors were overexpressed in TNF-treated FLS and co-cultured T cells. Knock-down of ICAM1 in FLS resulted in reduced TNF-mediated FLS-T cell interaction.
Conclusion: Our study highlights the role of cytokine-activated FLS in orchestrating inflammation-associated synovial pathotypes providing novel insights into disease mechanisms of RA
Dynamic expression of tyrosine hydroxylase mRNA and protein in neurons of the striatum and amygdala of mice, and experimental evidence of their multiple embryonic origin
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies
Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen
The death domain-containing protein Unc5CL is a novel MyD88-independent activator of the pro-inflammatory IRAK signaling cascade.
The family of death domain (DD)-containing proteins are involved in many cellular processes, including apoptosis, inflammation and development. One of these molecules, the adapter protein MyD88, is a key factor in innate and adaptive immunity that integrates signals from the Toll-like receptor/interleukin (IL)-1 receptor (TLR/IL-1R) superfamily by providing an activation platform for IL-1R-associated kinases (IRAKs). Here we show that the DD-containing protein Unc5CL (also known as ZUD) is involved in a novel MyD88-independent mode of IRAK signaling that culminates in the activation of the transcription factor nuclear factor kappa B (NF-?B) and c-Jun N-terminal kinase. Unc5CL required IRAK1, IRAK4 and TNF receptor-associated factor 6 but not MyD88 for its ability to activate these pathways. Interestingly, the protein is constitutively autoproteolytically processed, and is anchored by its N-terminus specifically to the apical face of mucosal epithelial cells. Transcriptional profiling identified mainly chemokines, including IL-8, CXCL1 and CCL20 as Unc5CL target genes. Its prominent expression in mucosal tissues, as well as its ability to induce a pro-inflammatory program in cells, suggests that Unc5CL is a factor in epithelial inflammation and immunity as well as a candidate gene involved in mucosal diseases such as inflammatory bowel disease
