8 research outputs found

    Dopamine acting at D1-like, D2-like and α1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex

    Get PDF
    The loss of dopamine (DA) in Parkinson’s is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1

    Predictive value of 18F-FDG PET-CT in primary breast cancer patients receiving neoadjuvant chemotherapy: the HKU experience

    No full text

    The drugs don't work-or do they? Pharmacological and transgenic studies of the contribution of NMDA and GluR-A-containing AMPA receptors to hippocampal-dependent memory.

    No full text
    OBJECTIVE: The aim of this article is to provide a review of studies using N-methyl-D-aspartate (NMDA) receptor antagonists to assess the hippocampal long-term potentiation (LTP)/learning hypothesis. DISCUSSION: In particular, we will re-examine the validity of both (1) the original hippocampal LTP/spatial learning hypothesis of Morris and (2) the sensorimotor account put forward by Cain, among others, both from the point of view of the pharmacological studies on which they were based and with regard to recent studies with genetically modified mice. More specifically, we will review the pharmacological studies in the light of recent work on the glutamate receptor A (GluR-A or GluR1) L-alpha-amino-3-hydroxy-5-methyl-4-isoxazelopropionate (AMPA) receptor sub-unit knockout mouse. We will argue that neither the original hippocampal LTP/spatial learning hypothesis nor a sensorimotor account can adequately explain all of the available data. We argue instead that hippocampal synaptic plasticity, which requires NMDA receptors for its induction and GluR-A-containing AMPA receptors for its continued expression, contributes to a process whereby appropriate behavioural responses are selected rapidly on the basis of conditional information provided by the context. These contextual cues could include not only the spatial context (i.e. the 'where') and the temporal context (the 'when'), but also other aspects of context, such as internal state cues (hunger and fear state), and can be used to rapidly and flexibly alter valences of specific response options. RECOMMENDATIONS: We also suggest that there is a separate, distinct, NMDA/GluR-A-independent mechanism through which the context can gradually (incrementally or decrementally) alter the valence of a particular response option

    Models and Theoretical Frameworks for Hippocampal and Entorhinal Cortex Function in Memory and Navigation

    No full text

    Primary Neuroprotection

    No full text
    corecore