32 research outputs found
W/M serrated osteotomy for infantile Blount’s disease in Ghana: Short‑term results
Purpose: The W/M serrated high tibial osteotomy is a not frequently described surgical technique for simultaneously correcting the varus and torsional deformity in patients with Blount’s disease. Without the need for internal fixation, this surgical treatment is well suited for developing countries. This study describes the short‑term results of the bilateral and unilateral W/M serrated osteotomy in patients with infantile Blount’s disease.Methods: Between May 2008 and January 2013, 52 patients were treated with uni‑ (n = 22) or bi‑lateral (n = 30) W/M serrated osteotomy of the proximal tibia due to a tibial varus deformity in two district hospitals in Ghana. Other causes than infantile Blount’s disease were excluded from the analysis. Pre‑ and post‑operative clinical and radiological measurements were done, and complications were monitored up to 12 weeks after surgery.Results: Seventeen patients (five males, 12 females; mean age 4.9 [standard deviation: 2.10]) were included, which underwent a total of 25 W/M serrated osteotomies. The femorotibial angle was corrected from 34.1° ([mean] range: 6 68°) to − 7.1° ([mean] range: −28–5°). Only one patient had developed a wound infection, and all reached full consolidation.Conclusions: The W/M serrated osteotomy seems a profitable alternative technique for treating the varus and torsional deformity in patients with Blount’s disease in the circumstances of developing countries. The short‑term outcomes are good and promising with a low complication rate and good consolidation. Long‑term follow‑up results of these patients are needed to observe possible complications.Level of Evidence: IV, therapeutic case series.Keywords: Blount’s disease, complications, infantile, osteotomy, tibia var
Non-genetic expression of adolescent idiopathic scoliosis: a case report and review of the literature
Treating children with idiopathic scoliosis can amaze someone at the many different ways in which the deformity can present. Most authors state that genetics stipulates the course of adolescent idiopathic scoliosis. This is mainly based on the high concordance in monozygotic twins. However, there is indication that environmental factors have influences on adolescent idiopathic scoliosis. This is the first report in which a monozygotic twin pair is described concordant for idiopathic scoliosis but with different apical levels, magnitudes and age at detection of scoliosis which stresses the importance of environmental factors
Predictability of the spontaneous lumbar curve correction after selective thoracic fusion in idiopathic scoliosis
In this study we tried to achieve a better understanding of the biodynamic mechanism of balance in the scoliotic spine. Therefore we focused on the pre- and postoperative spine of patients with idiopathic scoliosis with a primary thoracic curve and a secondary lumbar curve. Several studies showed that the lumbar curve spontaneously corrects and improves after selective thoracic fusion. We try to understand and describe this spontaneous compensatory lumbar curve correction after selective thoracic correction and fusion. We performed a retrospective examination of pre- and postoperative radiographs of the spine of 38 patients with idiopathic scoliosis King type II and III. Frontal Cobb angles of the thoracic and lumbar curves were assessed on pre- and postoperative antero-posterior and side bending radiographs. We determined the postoperative corrections of the thoracic and lumbar curves. Relative (%) corrections and correlations of the postoperative corrections were calculated. The group was divided in three subgroups, depending on lumbar curve modifier, according to Lenkes classification system. The calculations were done for the whole group as for each subgroup. As expected, significant correlations were present between the relative correction of the main thoracic and the lumbar curve (mean R = 0.590; P = 0.001). The relation between relative thoracic and lumbar correction decreased with the lumbar modifier type. This study shows a highly significant correlation between the relative corrections of the main thoracic curve and the lumbar curve after selective thoracic fusion in idiopathic scoliosis. This correlation depends on lumbar curve modifier type. This new classification system seems to be of great predictable value for the spontaneous correction of the lumbar curve. Depending on the curve-type, a different technique for predicting the outcome should be used. The lumbar curve correction does not occur throughout the whole lumbar curve. Most correction is achieved in the upper part of the curve. The distal lumbar curve seems to be more rigid and less important in the spontaneous curve correction
Direct comparison of non-osteoarthritic and osteoarthritic synovial fluid-induced intracellular chondrocyte signaling and phenotype changes.
ObjectiveSince the joint microenvironment and tissue homeostasis are highly dependent on synovial fluid, we aimed to compare the essential chondrocyte signaling signatures of non-osteoarthritic vs end-stage osteoarthritic knee synovial fluid. Moreover, we determined the phenotypic consequence of the distinct signaling patterns on articular chondrocytes.MethodsProtein profiling of synovial fluid was performed using antibody arrays. Chondrocyte signaling and phenotypic changes induced by non-osteoarthritic and osteoarthritic synovial fluid were analyzed using a phospho-kinase array, luciferase-based transcription factor activity assays, and RT-qPCR. The origin of osteoarthritic synovial fluid signaling was evaluated by comparing the signaling responses of conditioned media from cartilage, synovium, infrapatellar fat pad and meniscus. Osteoarthritic synovial fluid induced pathway-phenotype relationships were evaluated using pharmacological inhibitors.ResultsCompared to non-osteoarthritic synovial fluid, osteoarthritic synovial fluid was enriched in cytokines, chemokines and growth factors that provoked differential MAPK, AKT, NFκB and cell cycle signaling in chondrocytes. Functional pathway analysis confirmed increased activity of these signaling events upon osteoarthritic synovial fluid stimulation. Tissue secretomes of osteoarthritic cartilage, synovium, infrapatellar fat pad and meniscus activated several inflammatory signaling routes. Furthermore, the distinct pathway signatures of osteoarthritic synovial fluid led to accelerated chondrocyte dedifferentiation via MAPK/ERK signaling, increased chondrocyte fibrosis through MAPK/JNK and PI3K/AKT activation, an elevated inflammatory response mediated by cPKC/NFκB, production of extracellular matrix-degrading enzymes by MAPK/p38 and PI3K/AKT routes, and enabling of chondrocyte proliferation.ConclusionThis study provides the first mechanistic comparison between non-osteoarthritic and osteoarthritic synovial fluid, highlighting MAPKs, cPKC/NFκB and PI3K/AKT as crucial OA-associated intracellular signaling routes
Differential Proteome Analysis of Bone Marrow Mesenchymal Stem Cells from Adolescent Idiopathic Scoliosis Patients
Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional deformity of the spine. The cause and pathogenesis of scoliosis and the accompanying generalized osteopenia remain unclear despite decades of extensive research. In this study, we utilized two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS) to analyze the differential proteome of bone marrow mesenchymal stem cells (BM-MSCs) from AIS patients. In total, 41 significantly altered protein spots were detected, of which 34 spots were identified by MALDI-TOF/TOF analysis and found to represent 25 distinct gene products. Among these proteins, five related to bone growth and development, including pyruvate kinase M2, annexin A2, heat shock 27 kDa protein, γ-actin, and β-actin, were found to be dysregulated and therefore selected for further validation by Western blot analysis. At the protein level, our results supported the previous hypothesis that decreased osteogenic differentiation ability of MSCs is one of the mechanisms leading to osteopenia in AIS. In summary, we analyzed the differential BM-MSCs proteome of AIS patients for the first time, which may help to elucidate the underlying molecular mechanisms of bone loss in AIS and also increase understanding of the etiology and pathogenesis of AIS
Severe axial vertebral rotation treated with a modified Boston brace: a case report
We report the case of a 13-year-old Caucasian girl suffering from severe axial rotation of the T5 to L4 vertebrae. The patient (initially examined during a school screening study) was at first considered to be suspicious of suffering from scoliosis due to a highly positive Adam's forward bending test. However, her radiographic evaluation revealed the existence of axial rotation in 12 of her vertebrae, without inclination in the sagittal and coronal planes. After an observation period of 12 months and due to the fact that both her physical appearance and the measured vertebral rotation deteriorated, the patient was given a modified thoracolumbar Boston brace that had an immediate positive derotational effect on all but two vertebrae. Twenty four months later, the progress of the vertebral rotation(s) seems to have been halted and most affected vertebrae appear to be stabilized in their new, 'post-brace', reduced position, with better results shown when the Boston brace is worn. The patient remains under constant medical observation. The application of a modified Boston brace seems to have served well (so far) a useful purpose for reducing and stabilizing this case of severe axial vertebral rotation, providing less deformity and (possibly) offering a better final cosmetic result