111 research outputs found
Rapid Effects of Marine Reserves via Larval Dispersal
Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs), with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest
X-ray Absorption and Reflection in Active Galactic Nuclei
X-ray spectroscopy offers an opportunity to study the complex mixture of
emitting and absorbing components in the circumnuclear regions of active
galactic nuclei, and to learn about the accretion process that fuels AGN and
the feedback of material to their host galaxies. We describe the spectral
signatures that may be studied and review the X-ray spectra and spectral
variability of active galaxies, concentrating on progress from recent Chandra,
XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for
absorption covering a wide range of column densities, ionization and dynamics,
and discuss the growing evidence for partial-covering absorption from data at
energies > 10 keV. Such absorption can also explain the observed X-ray spectral
curvature and variability in AGN at lower energies and is likely an important
factor in shaping the observed properties of this class of source.
Consideration of self-consistent models for local AGN indicates that X-ray
spectra likely comprise a combination of absorption and reflection effects from
material originating within a few light days of the black hole as well as on
larger scales. It is likely that AGN X-ray spectra may be strongly affected by
the presence of disk-wind outflows that are expected in systems with high
accretion rates, and we describe models that attempt to predict the effects of
radiative transfer through such winds, and discuss the prospects for new data
to test and address these ideas.Comment: Accepted for publication in the Astronomy and Astrophysics Review. 58
pages, 9 figures. V2 has fixed an error in footnote
Recovery of a temperate reef assemblage in a marine protected area following the exclusion of towed demersal fishing.
Marine Protected Areas MPA have been widely used over the last 2 decades to address human impacts on marine habitats within an ecosystem management context. Few studies have quantified recovery of temperate rocky reef communities following the cessation of scallop dredging or demersal trawling. This is critical information for the future management of these habitats to contribute towards conservation and fisheries targets. The Lyme Bay MPA, in south west UK, has excluded towed demersal fishing gear from 206 km(2) of sensitive reef habitat using a Statutory Instrument since July 2008. To assess benthic recovery in this MPA we used a flying video array to survey macro epi-benthos annually from 2008 to 2011. 4 treatments (the New Closure, previously voluntarily Closed Controls and Near or Far Open to fishing Controls) were sampled to test a recovery hypothesis that was defined as 'the New Closure becoming more similar to the Closed Controls and less similar to the Open Controls'. Following the cessation of towed demersal fishing, within three years positive responses were observed for species richness, total abundance, assemblage composition and seven of 13 indicator taxa. Definitive evidence of recovery was noted for species richness and three of the indicator taxa (Pentapora fascialis, Phallusia mammillata and Pecten maximus). While it is hoped that MPAs, which exclude anthropogenic disturbance, will allow functional restoration of goods and services provided by benthic communities, it is an unknown for temperate reef systems. Establishing the likely timescales for restoration is key to future marine management. We demonstrate the early stages of successful recruitment and link these to the potential wider ecosystem benefits including those to commercial fisheries
Spearfishing Regulation Benefits Artisanal Fisheries: The ReGS Indicator and Its Application to a Multiple-Use Mediterranean Marine Protected Area
The development of fishing efficiency coupled with an increase of fishing effort led to the overexploitation of numerous natural marine resources. In addition to this commercial pressure, the impact of recreational activities on fish assemblages remains barely known. Here we examined the impact of spearfishing limitation on resources in a marine protected area (MPA) and the benefit it provides for the local artisanal fishery through the use of a novel indicator. We analysed trends in the fish assemblage composition using artisanal fisheries data collected in the Bonifacio Strait Natural Reserve (BSNR), a Mediterranean MPA where the spearfishing activity has been forbidden over 15% of its area. Fish species were pooled into three response groups according to their target level by spearfishing. We developed the new flexible ReGS indicator reflecting shifts in species assemblages according to the relative abundance of each response group facing external pressure. The catch per unit effort (CPUE) increased by ca. 60% in the BSNR between 2000 and 2007, while the MPA was established in 1999. The gain of CPUE strongly depended on the considered response group: for the highly targeted group, the CPUE doubled while the CPUE of the untargeted group increased by only 15.5%. The ReGS value significantly increased from 0.31 to 0.45 (on a scale between 0 and 1) in the general perimeter of this MPA while it has reached a threshold of 0.43, considered as a reference point, in the area protected from spearfishing since 1982. Our results demonstrated that limiting recreational fishing by appropriate zoning in multiple-use MPAs represents a real benefit for artisanal fisheries. More generally we showed how our new indicator may reveal a wide range of impacts on coastal ecosystems such as global change or habitat degradation
The caudo-ventral pallium is a novel pallial domain expressing Gdf10 and generating Ebf3-positive neurons of the medial amygdala
In rodents, the medial nucleus of the amygdala receives direct inputs from the accessory olfactory bulbs and is mainly implicated in pheromone-mediated reproductive and defensive behaviors. The principal neurons of the medial amygdala are GABAergic neurons generated principally in the caudo-ventral medial ganglionic eminence and preoptic area. Beside GABAergic neurons, the medial amygdala also contains glutamatergic Otp-expressing neurons cells generated in the lateral hypothalamic neuroepithelium and a non-well characterized Pax6-positive population. In the present work, we describe a novel glutamatergic Ebf3-expressing neuronal subpopulation distributed within the periphery of the postero-ventral medial amygdala. These neurons are generated in a pallial domain characterized by high expression of Gdf10. This territory is topologically the most caudal tier of the ventral pallium and accordingly, we named it Caudo-Ventral Pallium (CVP). In the absence of Pax6, the CVP is disrupted and Ebf3-expressing neurons fail to be generated. Overall, this work proposes a novel model of the neuronal composition of the medial amygdala and unravels for the first time a new novel pallial subpopulation originating from the CVP and expressing the transcription factor Ebf3.This work was supported by Grants of the French National Research Agency (Agence Nationale de la Recherche; ANR) [ANR-13-BSV4-0011] and by the French Government through the ‘Investments for the Future’ LABEX SIGNALIFE [ANR-11-LABX-0028-01] to M.S., by the Spanish Government (BFU2007-60263 and BFU2010-17305) to A.F, and by the Medical Research Council (MR/K013750/1) to T.T. N.R.-R. is funded by a postdoctoral fellowship from the Ville de Nice, France (“Aide Individuelle aux Jeunes Chercheurs 2016”).Peer reviewe
Relative Impacts of Adult Movement, Larval Dispersal and Harvester Movement on the Effectiveness of Reserve Networks
Movement of individuals is a critical factor determining the effectiveness of
reserve networks. Marine reserves have historically been used for the management
of species that are sedentary as adults, and, therefore, larval dispersal has
been a major focus of marine-reserve research. The push to use marine reserves
for managing pelagic and demersal species poses significant questions regarding
their utility for highly-mobile species. Here, a simple conceptual
metapopulation model is developed to provide a rigorous comparison of the
functioning of reserve networks for populations with different admixtures of
larval dispersal and adult movement in a home range. We find that adult movement
produces significantly lower persistence than larval dispersal, all other
factors being equal. Furthermore, redistribution of harvest effort previously in
reserves to remaining fished areas (‘fishery squeeze’) and fishing
along reserve borders (‘fishing-the-line’) considerably reduce
persistence and harvests for populations mobile as adults, while they only
marginally changes results for populations with dispersing larvae. Our results
also indicate that adult home-range movement and larval dispersal are not simply
additive processes, but rather that populations possessing both modes of
movement have lower persistence than equivalent populations having the same
amount of ‘total movement’ (sum of larval and adult movement spatial
scales) in either larval dispersal or adult movement alone
Placebo-controlled clinical trials: how trial documents justify the use of randomisation and placebo
Phylogenetic Relatedness Influences Plant Interspecific Interactions Across Stress Levels in Coastal Ecosystems: a Meta-Analysis
Positive and negative interactions can occur simultaneously between plant species. According to the stress gradient hypothesis (SGH), species interactions shift towards more facilitative interactions or reductions in competition with increasing stress, whereas debate continues over whether evolutionary history influences the strength of species interactions. However, few studies have investigated the effects of phylogenetic relatedness (i.e., the sum of branch lengths separating species on a phylogeny) on the outcomes of interspecific interactions across stress levels. Therefore, we conducted a Bayesian meta-analysis on data collected from publications on plant interactions within coastal ecosystems in order to investigate the effects of phylogenetic relatedness on interspecific interactions across different stress levels. These analyses showed the effect sizes of species interactions on survival and growth to increase with stress increment, supporting the SGH in coastal ecosystems. However, phylogenetic relatedness did not lead to these differences of interspecific interactions between low and high stress. We found that species interactions affecting plant survival were not significantly influenced by phylogenetic relatedness; however, when evolutionary relationships of target and neighbor species were more phylogenetically distant, their interactions were more likely to facilitate growth of target species. Furthermore, the effect of the interaction between phylogenetic distance and stress on species interactions was negative. This suggests the observed net effects of phylogenetically distant neighbor species on target species were not due to true facilitation but reductions in competition when moving from low stress to high stress environments. According to these results, phylogenetic relatedness should be considered in choosing species for restoration of coastal ecosystem plant communities. Specifically, increasing the phylogenetic breadth of the assemblage is more likely to include species that have evolved to reduce stress on surrounding species through modification of the environment
- …