31 research outputs found

    Dietary restriction in ILSXISS mice is associated with widespread changes in splicing regulatory factor expression levels.

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record Dietary restriction (DR) represents one of the most reproducible interventions to extend lifespan and improve health outcomes in a wide range of species, but substantial variability in DR response has been observed, both between and within species. The mechanisms underlying this variation in effect are still not well characterised. Splicing regulatory factors have been implicated in the pathways linked with DR-induced longevity in C. elegans and are associated with lifespan itself in mice and humans. We used qRT-PCR to measure the expression levels of a panel of 20 age- and lifespan-associated splicing regulatory factors in brain, heart and kidney derived from three recombinant inbred strains of mice with variable lifespan responses to short-term (2 months) or long-term (10 months) 40% DR to determine their relationship to DR-induced longevity. We identified 3 patterns of association; i) splicing factors associated with DR alone, ii) splicing factors associated with strain alone or iii) splicing factors associated with both DR and strain. Tissue specific variation was noted in response to short term or long-term DR, with the majority of effects noted in brain following long term DR in the positive responder strain TejJ89. Association in heart and kidney were less evident, and occurred following short term DR. Splicing factors associated with both DR and strain may be mechanistically involved in strain-specific differences in response to DR. We provide here evidence concordant with a role for some splicing factors in the lifespan modulatory effects of DR across different mouse strains and in different tissues

    Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics

    Get PDF
    © 2017 The Author(s). Current limitations to primary cell expansion led us to test whether airway epithelial cells derived from healthy children and those with asthma and cystic fibrosis (CF), co-cultured with an irradiated fibroblast feeder cell in F-medium containing 10 µM ROCK inhibitor could maintain their lineage during expansion and whether this is influenced by underlying disease status. Here, we show that conditionally reprogrammed airway epithelial cells (CRAECs) can be established from both healthy and diseased phenotypes. CRAECs can be expanded, cryopreserved and maintain phenotypes over at least 5 passages. Population doublings of CRAEC cultures were significantly greater than standard cultures, but maintained their lineage characteristics. CRAECs from all phenotypes were also capable of fully differentiating at air-liquid interface (ALI) and maintained disease specific characteristics including; defective CFTR channel function cultures and the inability to repair wounds. Our findings indicate that CRAECs derived from children maintain lineage, phenotypic and importantly disease-specific functional characteristics over a specified passage range

    Hypoxia increases neutrophil-driven matrix destruction after exposure to Mycobacterium tuberculosis.

    Get PDF
    The importance of neutrophils in the pathology of tuberculosis (TB) has been recently established. We demonstrated that TB lesions in man are hypoxic, but how neutrophils in hypoxia influence lung tissue damage is unknown. We investigated the effect of hypoxia on neutrophil-derived enzymes and tissue destruction in TB. Human neutrophils were stimulated with M. tuberculosis (M.tb) or conditioned media from M.tb-infected monocytes (CoMTB). Neutrophil matrix metalloproteinase-8/-9 and elastase secretion were analysed by luminex array and gelatin zymography, gene expression by qPCR and cell viability by flow cytometry. Matrix destruction was investigated by confocal microscopy and functional assays and neutrophil extracellular traps (NETs) by fluorescence assay. In hypoxia, neutrophil MMP-8 secretion and gene expression were up-regulated by CoMTB. MMP-9 activity and neutrophil elastase (NE) secretion were also increased in hypoxia. Hypoxia inhibited NET formation and both neutrophil apoptosis and necrosis after direct stimulation by M.tb. Hypoxia increased TB-dependent neutrophil-mediated matrix destruction of Type I collagen, gelatin and elastin, the main structural proteins of the human lung. Dimethyloxalylglycin (DMOG), which stabilizes hypoxia-inducible factor-1α, increased neutrophil MMP-8 and -9 secretion. Hypoxia in our cellular model of TB up-regulated pathways that increase neutrophil secretion of MMPs that are implicated in matrix destruction

    Protocol for an economic evaluation alongside the University Health Network Whiplash Intervention Trial: cost-effectiveness of education and activation, a rehabilitation program, and the legislated standard of care for acute whiplash injury in Ontario

    Get PDF
    Background: Whiplash injury affects 83% of persons in a traffic collision and leads to whiplash-associated disorders (WAD). A major challenge facing health care decision makers is identifying cost-effective interventions due to lack of economic evidence. Our objective is to compare the cost-effectiveness of: 1) physician-based education and activation, 2) a rehabilitation program developed by Aviva Canada (a group of property and casualty insurance providers), and 3) the legislated standard of care in the Canadian province of Ontario: the Pre-approved Framework Guideline for Whiplash developed by the Financial Services Commission of Ontario. Methods/Design. The economic evaluation will use participant-level data from the University Health Network Whiplash Intervention Trial and will be conducted from the societal perspective over the trial's one-year follow-up. Resource use (costs) will include all health care goods and services, and benefits provided during the trial's 1-year follow-up. The primary health effect will be the quality-adjusted life year. We will identify the most cost-effective intervention using the incremental cost-effectiveness ratio and incremental net-benefit. Confidence ellipses and cost-effectiveness acceptability curves will represent uncertainty around these statistics, respectively. A budget impact analysis will assess the total annual impact of replacing the current legislated standard of care with each of the other interventions. An expected value of perfect information will determine the maximum research expenditure Canadian society should be willing to pay for, and inform priority setting in, research of WAD management. Discussion. Results will provide health care decision makers with much needed economic evidence on common interventions for acute whiplash management. © 2011 van der Velde et al; licensee BioMed Central Ltd

    Beta-Strand Interfaces of Non-Dimeric Protein Oligomers Are Characterized by Scattered Charged Residue Patterns

    Get PDF
    Protein oligomers are formed either permanently, transiently or even by default. The protein chains are associated through intermolecular interactions constituting the protein interface. The protein interfaces of 40 soluble protein oligomers of stœchiometries above two are investigated using a quantitative and qualitative methodology, which analyzes the x-ray structures of the protein oligomers and considers their interfaces as interaction networks. The protein oligomers of the dataset share the same geometry of interface, made by the association of two individual β-strands (β-interfaces), but are otherwise unrelated. The results show that the β-interfaces are made of two interdigitated interaction networks. One of them involves interactions between main chain atoms (backbone network) while the other involves interactions between side chain and backbone atoms or between only side chain atoms (side chain network). Each one has its own characteristics which can be associated to a distinct role. The secondary structure of the β-interfaces is implemented through the backbone networks which are enriched with the hydrophobic amino acids favored in intramolecular β-sheets (MCWIV). The intermolecular specificity is provided by the side chain networks via positioning different types of charged residues at the extremities (arginine) and in the middle (glutamic acid and histidine) of the interface. Such charge distribution helps discriminating between sequences of intermolecular β-strands, of intramolecular β-strands and of β-strands forming β-amyloid fibers. This might open new venues for drug designs and predictive tool developments. Moreover, the β-strands of the cholera toxin B subunit interface, when produced individually as synthetic peptides, are capable of inhibiting the assembly of the toxin into pentamers. Thus, their sequences contain the features necessary for a β-interface formation. Such β-strands could be considered as ‘assemblons’, independent associating units, by homology to the foldons (independent folding unit). Such property would be extremely valuable in term of assembly inhibitory drug development

    Aspergillus Infections and Progression of Structural Lung Disease in Children with Cystic Fibrosis.

    Full text link
    Rationale: Recent data show that Aspergillus species are prevalent respiratory infections in children with cystic fibrosis (CF). The biological significance of these infections is unknown.Objectives: We aimed to evaluate longitudinal associations between Aspergillus infections and lung disease in young children with CF.Methods: Longitudinal data on 330 children participating in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis surveillance program between 2000 and 2018 who underwent annual chest computed tomography (CT) imaging and BAL were used to determine the association between Aspergillus infections and the progression of structural lung disease. Results were adjusted for the effects of other common infections, associated variables, and repeated visits. Secondary outcomes included inflammatory markers in BAL, respiratory symptoms, and admissions for exacerbations.Measurements and Main Results: Haemophilus influenzae, Staphylococcus aureus, Pseudomonas aeruginosa, and Aspergillus infections were all associated with worse CT scores in the same year (Poverall < 0.05). Only P. aeruginosa and Aspergillus were associated with progression in CT scores in the year after an infection and worse CT scores at the end of the observation period. P. aeruginosa was most significantly associated with development of bronchiectasis (difference, 0.9; 95% confidence interval, 0.3-1.6; P = 0.003) and Aspergillus with trapped air (difference, 3.2; 95% confidence interval, 1.0-5.4; P = 0.004). Aspergillus infections were also associated with markers of neutrophilic inflammation (P < 0.001) and respiratory admissions risk (P = 0.008).Conclusions: Lower respiratory Aspergillus infections are associated with the progression of structural lung disease in young children with CF. This study highlights the need to further evaluate early Aspergillus species infections and the feasibility, risk, and benefit of eradication regimens

    ACE2 expression is elevated in airway epithelial cells from older and male healthy individuals but reduced in asthma.

    Full text link
    Background and objectiveCOVID-19 is complicated by acute lung injury, and death in some individuals. It is caused by SARS-CoV-2 that requires the ACE2 receptor and serine proteases to enter AEC. We determined what factors are associated with ACE2 expression particularly in patients with asthma and COPD.MethodsWe obtained lower AEC from 145 people from two independent cohorts, aged 2-89 years, Newcastle (n = 115) and Perth (n = 30), Australia. The Newcastle cohort was enriched with people with asthma (n = 37) and COPD (n = 38). Gene expression for ACE2 and other genes potentially associated with SARS-CoV-2 cell entry was assessed by qPCR, and protein expression was confirmed with immunohistochemistry on endobronchial biopsies and cultured AEC.ResultsIncreased gene expression of ACE2 was associated with older age (P = 0.03) and male sex (P = 0.03), but not with pack-years smoked. When we compared gene expression between adults with asthma, COPD and healthy controls, mean ACE2 expression was lower in asthma patients (P = 0.01). Gene expression of furin, a protease that facilitates viral endocytosis, was also lower in patients with asthma (P = 0.02), while ADAM-17, a disintegrin that cleaves ACE2 from the surface, was increased (P = 0.02). ACE2 protein expression was also reduced in endobronchial biopsies from asthma patients.ConclusionIncreased ACE2 expression occurs in older people and males. Asthma patients have reduced expression. Altered ACE2 expression in the lower airway may be an important factor in virus tropism and may in part explain susceptibility factors and why asthma patients are not over-represented in those with COVID-19 complications
    corecore