242 research outputs found

    Short-time dynamics and magnetic critical behavior of two-dimensional random-bond Potts model

    Get PDF
    The critical behavior in the short-time dynamics for the random-bond Potts ferromagnet in two-dimensions is investigated by short-time dynamic Monte Carlo simulations. The numerical calculations show that this dynamic approach can be applied efficiently to study the scaling characteristic, which is used to estimate the critical exponents theta, beta/nu and z for the quenched disorered systems from the power-law behavior of the kth moments of magnetizations.Comment: 10 pages, 4 figures Soft Condensed Matte

    New Upper Limit of Terrestrial Equivalence Principle Test for Rotating Extended Bodies

    Full text link
    Improved terrestrial experiment to test the equivalence principle for rotating extended bodies is presented, and a new upper limit for the violation of the equivalence principle is obtained at the level of 1.610-7% \times 10^{\text{-7}}, which is limited by the friction of the rotating gyroscope. It means the spin-gravity interaction between the extended bodies has not been observed at this level.Comment: 4 page

    Random Walks in Logarithmic and Power-Law Potentials, Nonuniversal Persistence, and Vortex Dynamics in the Two-Dimensional XY Model

    Full text link
    The Langevin equation for a particle (`random walker') moving in d-dimensional space under an attractive central force, and driven by a Gaussian white noise, is considered for the case of a power-law force, F(r) = - Ar^{-sigma}. The `persistence probability', P_0(t), that the particle has not visited the origin up to time t, is calculated. For sigma > 1, the force is asymptotically irrelevant (with respect to the noise), and the asymptotics of P_0(t) are those of a free random walker. For sigma < 1, the noise is (dangerously) irrelevant and the asymptotics of P_0(t) can be extracted from a weak noise limit within a path-integral formalism. For the case sigma=1, corresponding to a logarithmic potential, the noise is exactly marginal. In this case, P_0(t) decays as a power-law, P_0(t) \sim t^{-theta}, with an exponent theta that depends continuously on the ratio of the strength of the potential to the strength of the noise. This case, with d=2, is relevant to the annihilation dynamics of a vortex-antivortex pair in the two-dimensional XY model. Although the noise is multiplicative in the latter case, the relevant Langevin equation can be transformed to the standard form discussed in the first part of the paper. The mean annihilation time for a pair initially separated by r is given by t(r) \sim r^2 ln(r/a) where a is a microscopic cut-off (the vortex core size). Implications for the nonequilibrium critical dynamics of the system are discussed and compared to numerical simulation results.Comment: 10 pages, 1 figur

    Fragmentation and Multifragmentation of 10.6A GeV Gold Nuclei

    Get PDF
    We present the results of a study performed on the interactions of 10.6A GeV gold nuclei in nuclear emulsions. In a minimum bias sample of 1311 interac- tions, 5260 helium nuclei and 2622 heavy fragments were observed as Au projec- tile fragments. The experimental data are analyzed with particular emphasis of target separation interactions in emulsions and study of criticalexponents. Multiplicity distributions of the fast-moving projectile fragments are inves- tigated. Charged fragment moments, conditional moments as well as two and three -body asymmetries of the fast moving projectile particles are determined in terms of the total charge remaining bound in the multiply charged projectile fragments. Some differences in the average yields of helium nuclei and heavier fragments are observed, which may be attributed to a target effect. However, two and three-body asymmetries and conditional moments indicate that the breakup mechanism of the projectile seems to be independent of target mass. We looked for evidence of critical point observable in finite nuclei by study the resulting charged fragments distributions. We have obtained the values for the critical exponents gamma, beta and tau and compare our results with those at lower energy experiment (1.0A GeV data). The values suggest that a phase transition like behavior, is observed.Comment: latex, revtex, 28 pages, 12 figures, 3tables, submitted to Europysics Journal

    The present and future of QCD

    Get PDF
    This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades

    A study on the constitutive equation of blood

    No full text
    This paper proposes and studies a new three-parameter constitutive equation for whole human blood. The model aims at a proper description of the shear thinning behavior of blood at both low and high shear rates. While empirically based, it relies on continuum constitutive theories. The model has been verified by fitting the experimental data available in the literature using the weighted least squares. Results show that the proposed model fits the experimental data with nearly constant parameters in a wide shear range, and with average deviations ε̄ less than 6.24%. Formulae to calculate the velocity profile and flow rate of the proposed model in a straight tube flow were deduced. Compared to Casson's and Newtonian models, it is concluded that the proposed model is more effective in describing the shear thinning behavior of blood within a wide shear range

    Non-Newtonian flow patterns associated with an arterial stenosis

    Get PDF
    A non-Newtonian constitutive equation for blood has been introduced in this paper. Using this equation, blood flow attributes such as velocity profiles, flowrate, pressure gradient, and wall shear stress in both straight and stenotic (constricted) tubes have been examined. Results showed that compared with Newtonian flow at the same flowrate, the non-Newtonian normally features larger pressure gradient, higher wall shear stress, and different velocity profile, especially in stenotic tube. In addition, the non-Newtonian stenotic flow appears to be more stable than Newtonian flow

    Velocity, pressure and shear stress distributions in a pulsatile stenotic flow

    No full text
    No abstract available
    corecore