358 research outputs found

    Nanoalloying and phase transformations during thermal treatment of physical mixtures of Pd and Cu nanoparticles

    Get PDF
    Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles are investigated in real time with in situ synchrotron-based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. The combination of metal-support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. At 300 degrees C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (\u3e 450 degrees C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals segregated at 300 degrees C to produce almost pure fcc Cu and Pd phases. Upon further annealing of the mixture on alumina above 600 degrees C, the two metals interdiffused, forming two distinct disordered alloys of compositions 30% and 90% Pd. The annealing atmosphere also plays a major role in the structural evolution of these bimetallic nanoparticles. The nanoparticles annealed in forming gas are larger than the nanoparticles annealing in helium due to reduction of the surface oxides that promotes coalescence and sintering

    Learning to Infer User Hidden States for Online Sequential Advertising

    Get PDF
    To drive purchase in online advertising, it is of the advertiser's great interest to optimize the sequential advertising strategy whose performance and interpretability are both important. The lack of interpretability in existing deep reinforcement learning methods makes it not easy to understand, diagnose and further optimize the strategy. In this paper, we propose our Deep Intents Sequential Advertising (DISA) method to address these issues. The key part of interpretability is to understand a consumer's purchase intent which is, however, unobservable (called hidden states). In this paper, we model this intention as a latent variable and formulate the problem as a Partially Observable Markov Decision Process (POMDP) where the underlying intents are inferred based on the observable behaviors. Large-scale industrial offline and online experiments demonstrate our method's superior performance over several baselines. The inferred hidden states are analyzed, and the results prove the rationality of our inference.Comment: to be published in CIKM 202

    Durable dual-state duplex Siā€“HfO2 with excellent oxidation and cracking resistance

    Get PDF
    The lifetime of Si bond coatings in environmental barrier coatings is constrained by phase-transition-induced cracking of the SiO2 scale. In this study, Siā€“HfO2 dual-state duplex composite materials are proposed to address this issue by partially forming HfSiO4 and minimizing the SiO2 content. The as-prepared composite exhibited a structure comprising discrete HfO2 ā€œbricksā€ embedded in a continuous Si ā€œmortarā€, while the oxidized state transformed into discrete HfSiO4 ā€œbricksā€ within continuous thin SiO2 ā€œmortarsā€. The results indicate that continuous thin SiO2 contributes to reducing the oxidation rate to a level comparable to that of pure Si, and discrete HfSiO4 particles aid in relieving phase transition-induced stress and inhibiting crack propagation, thereby enhancing oxidation and cracking resistance simultaneously. Consequently, the composite with 20 mol% HfO2 and a mean particle size of ~500 nm at 1370 ā„ƒ exhibited a service lifetime 10 times greater than that of pure Si. This research provides valuable insights for designing Si-based bond coatings with improved service lifetime

    Realization of edge states along a synthetic orbital angular momentum dimension

    Full text link
    The synthetic dimension is a rising method to study topological physics, which enables us to implement high-dimensional physics in low-dimensional geometries. Photonic orbital angular momentum (OAM), a degree of freedom characterized by discrete yet unbounded, serves as a suitable synthetic dimension. However, a sharp boundary along a synthetic OAM dimension has not been demonstrated, dramatically limiting the investigation of topological edge effects in an open boundary lattice system. In this work, we make a sharp boundary along a Floquet Su-Schrieffer-Heeger OAM lattice and form approximate semi-infinite lattices by drilling a pinhole on the optical elements in a cavity. The band structures with zero (Ā±Ļ€\pm\pi) energy boundary states are measured directly, benefiting from the spectra detection of the cavity. Moreover, we obtain the edge modes moving from the gap to the bulk by dynamically changing the boundary phase, and we reveal that interference near the surface leads to spectrum discretization. Our work provides a new perspective to observe edge effects and explore practical photonics tools

    Fabrication and quantum sensing of spin defects in silicon carbide

    Get PDF
    In the past decade, color centers in silicon carbide (SiC) have emerged as promising platforms for various quantum information technologies. There are three main types of color centers in SiC: silicon-vacancy centers, divacancy centers, and nitrogen-vacancy centers. Their spin states can be polarized by laser and controlled by microwave. These spin defects have been applied in quantum photonics, quantum information processing, quantum networks, and quantum sensing. In this review, we first provide a brief overview of the progress in single-color center fabrications for the three types of spin defects, which form the foundation of color center-based quantum technology. We then discuss the achievements in various quantum sensing, such as magnetic field, electric field, temperature, strain, and pressure. Finally, we summarize the current state of fabrications and quantum sensing of spin defects in SiC and provide an outlook for future developments

    Bifunctional nanoparticles for SERS monitoring and magnetic intervention of assembly and enzyme cutting of DNAs

    Get PDF
    National Science Foundation [CHE 0848701, CMMI 1100736]; National Natural Science Foundation of China [21036004]; DOEThe ability to harness the nanoscale structural properties is essential for the exploration of functional properties of nanomaterials. This report demonstrates a novel strategy exploring bifunctional nanoparticles for spectroscopic detection and magnetic intervention of DNA assembly, disassembly, and enzyme cutting processes in a solution phase. In contrast to existing single-function based approaches, this strategy exploits magnetic MnZn ferrite nanoparticles decorated with gold or silver on the surface to retain adequate magnetization while producing sufficient plasmonic resonance features to impart surface-enhanced Raman scattering (SERS) functions. The decoration of MnZn ferrite nanoparticles with Au or Ag (MZF/Au or MZF/Ag) was achieved by thermally activated deposition of Au or Ag atoms/nanoparticles on MZF nanoparticles. Upon interparticle double-stranded DNA linkage of the MZF/Au (or MZF/Ag) nanoparticles with gold nanoparticles labeled with a Raman reporter, the resulting interparticle "hot spots" are shown to enable real time SERS monitoring of the DNA assembly, disassembly, or enzyme cutting processes, where the magnetic component provides an effective means for intervention of the biomolecular processes in the solution. The unique bifunctional combination of the SERS "hot spots" and the magnetic separation capability serves as the first example of bifunctional nanoprobes for biomolecular recognition and intervention

    Prognostic implications of preoperative, postoperative, and dynamic changes of alpha-fetoprotein and des-gamma (Ī³)-carboxy prothrombin expression pattern for hepatocellular carcinoma after hepatic resection: a multicenter observational study

    Get PDF
    BackgroundThe utility of pre- and post-operative alpha-fetoprotein (AFP) and des-gamma (Ī³)-carboxy prothrombin (DCP) expression patterns and their dynamic changes as predictors of the outcome of hepatic resection for hepatocellular carcinoma (HCC) has yet to be well elucidated.MethodsFrom a multicenter database, AFP and DCP data during the week prior to surgery and the first post-discharge outpatient visit (within 1-2 months after surgery) were collected from patients with HCC who underwent hepatectomy. AFP-DCP expression patterns were categorized according to the number of positive tumor markers (AFP ā‰„ 20ng/mL, DCP ā‰„ 40mAU/mL), including double-negative, single-positive, and double-positive. Changes in the AFP-DCP expression patterns were delineated based on variations in the number of positive tumor markers when comparing pre- and post-operative patterns.ResultsPreoperatively, 53 patients (8.3%), 337 patients (52.8%), and 248 patients (38.9%) exhibited double-negative, single-positive, and double-positive AFP-DCP expression patterns, respectively. Postoperatively, 463 patients (72.6%), 130 patients (20.4%), and 45 patients (7.0%) showed double-negative, single-positive, and double-positive AFP-DCP expression patterns, respectively. Survival analysis showed a progressive decrease in recurrence-free (RFS) and overall survival (OS) as the number of postoperative positive tumor markers increased (both P < 0.001). Multivariate analysis showed that postoperative AFP-DCP expression pattern, but not preoperative AFP-DCP expression pattern, was an independent risk factor for RFS and OS. Further analysis showed that for patients with positive preoperative markers, prognosis gradually improves as positive markers decrease postoperatively. In particular, when all postoperative markers turned negative, the prognosis was consistent with that of preoperative double-negative patients, regardless of the initial number of positive markers.ConclusionsAFP-DCP expression patterns, particularly postoperative patterns, serve as vital sources of information for prognostic evaluation following hepatectomy for HCC. Moreover, changes in AFP-DCP expression patterns from pre- to post-operation enable dynamic prognostic risk stratification postoperatively, aiding the development of individualized follow-up strategies

    Investigating the Role of P311 in the Hypertrophic Scar

    Get PDF
    The mechanisms of hypertrophic scar formation are not fully understood. We previously screened the differentially expressed genes of human hypertrophic scar tissue and identified P311 gene as upregulated. As the activities of P311 in human fibroblast function are unknown, we examined the distribution of it and the effects of forced expression or silencing of expression of P311. P311 expression was detected in fibroblast-like cells from the hypertrophic scar of burn injury patients but not in peripheral blood mononuclear cells, bone marrow mesenchymal stem cells, epidermal cells or normal skin dermal cells. Transfection of fibroblasts with P311 gene stimulated the expression of alpha-smooth muscle actin (Ī±-SMA), TGF-Ī²1 and Ī±1(I) collagen (COL1A1), and enhanced the contraction of fibroblast populated collagen lattices (FPCL). In contrast, interference of fibroblast P311 gene expression decreased the TGF-Ī²1 mRNA expression and reduced the contraction of fibroblasts in FPCL. These results suggest that P311 may be involved in the pathogenesis of hypertrophic scar via induction of a myofibroblastic phenotype and of functions such as TGF-Ī²1 expression. P311 could be a novel target for the control of hypertrophic scar development
    • ā€¦
    corecore