20 research outputs found

    Evolution and Trend of Green Technology Innovation Research: Visual Analysis Based on CiteSpace

    Get PDF
    Systematically understanding the global characteristics of green technology innovation research and studying the hotspots and trends of international green technology innovation research can provide beneficial directional references for subsequent scholars’ research. Papers on green technology innovation published in the core database of Web of Science from 2007 to 2021 were selected as the research objects. Knowledge map analysis method and CiteSpace software were used for visual analysis, and the trend of published papers,research countries and institutions, authors and keywords of green technology innovation research was summarized. It is found that the research on green technology innovation is on the rise and is the focus of most scholars at present; The publication of papers mainly comes from China, and universities are the main force of research; The research is mainly gathered in technological innovation, environmental regulation and sustainable development, which has very important theoretical value and reference significance for the development of green technology innovation

    Research on Emergency Management Ability Evaluation of Sudden Landslide Event

    Get PDF
    In recent years, landslides occur frequently in China, which has brought great harm to people’s life and social security. Based on the relevant literature on landslide events and emergency management ability evaluation, this study constructs a set of effective landslide emergency management ability evaluation index system. At the same time, this study also comprehensively uses quantitative analysis and qualitative research methods to construct the evaluation model of landslide emergency management ability, and takes the “7.23” Shuicheng landslide event in Guizhou as an example. The results show that our government’s ability to deal with sudden landslides still needs to be improved, and the government should strengthen and improve early warning and prediction, information management and public opinion supervision. This study has certain practical significance and guiding role for the research of emergency management of sudden landslide

    Target SSR-Seq: A Novel SSR Genotyping Technology Associate With Perfect SSRs in Genetic Analysis of Cucumber Varieties

    Get PDF
    Simple sequence repeats (SSR) – also known as microsatellites – have been used extensively in genetic analysis, fine mapping, quantitative trait locus (QTL) mapping, as well as marker-assisted selection (MAS) breeding and other techniques. Despite a plethora of studies reporting that perfect SSRs with stable motifs and flanking sequences are more efficient for genetic research, the lack of a high throughput technology for SSR genotyping has limited their use as genetic targets in many crops. In this study, we developed a technology called Target SSR-seq that combined the multiplexed amplification of perfect SSRs with high throughput sequencing. This method can genotype plenty of SSR loci in hundreds of samples with highly accurate results, due to the substantial coverage afforded by high throughput sequencing. We also detected 844 perfect SSRs based on 182 resequencing datasets in cucumber, of which 91 SSRs were selected for Target SSR-seq. Finally, 122 SSRs, including 31 SSRs for varieties identification, were used to genotype 382 key cucumber varieties readily available in Chinese markets using our Target SSR-seq method. Libraries of PCR products were constructed and then sequenced on the Illumina HiSeq X Ten platform. Bioinformatics analysis revealed that 111 filtered SSRs were accurately genotyped with an average coverage of 1289× at an extremely low cost; furthermore, 398 alleles were observed in 382 cucumber cultivars. Genetic analysis identified four populations: northern China type, southern China type, European type, and Xishuangbanna type. Moreover, we acquired a set of 16 core SSRs for the identification of 382 cucumber varieties, of which 42 were isolated as backbone cucumber varieties. This study demonstrated that Target SSR-seq is a novel and efficient method for genetic research

    Scenario Evolution Analysis of Unconventional Emergencies Based on Social Network Analysis

    Get PDF
    In recent years, unconventional emergencies have occurred frequently in China, which have seriously threatened people’s life and property safety. It is beneficial to analyze the scenario evolution of unconventional emergencies to grasp the focus of emergency management. In this paper, a questionnaire survey was conducted on a factory in the “5.12 Wenchuan Earthquake”, and the accident was divided into four scenarios: ten minutes before the earthquake, during the earthquake and the escape process, the local self-rescue process, and the external rescue process. Social Network Analysis method is used to explore the scenario evolution law of unconventional emergencies, and relevant suggestions are made in combination with the rules

    Huang Lian Jie Du decoction attenuates inflammation in septic rats by activating autophagy and altering the intestinal microbiome

    No full text
    Aims: The aim of this study was to investigate the protective effect of HLJDD on septic rats and the underlying mechanisms. Materials and methods: Adult male Sprague–Dawley (SD) adult rats (150–180 g) were randomly divided into the following 5 groups (n = 7 per group): the Sham group, caecal ligation and puncture (CLP) group, HLJDD + CLP (Huang Lian Jie Du Decoction, HLJDD) group (1 g/mL/100 g), HLJDD + Rap + CLP (H. Rap) group (Rap: 3 mg/kg), and HLJDD+3-MA + CLP (H. 3-MA) group (3-MA: 30 mg/kg). Rapamycin (Rap) and 3-methyladenosine (3-MA) were used to activate and inhibit autophagy, respectively. HLJDD was purchased from Beijing Tong Ren Tang Guiyang Branch and verified by experts as a genuine product. We used CLP to establish an animal model of sepsis in the last four groups. Survival was analysed by the Kaplan‒Meier method. Then, we examined autophagy-related genes (Atgs) and proteins using real-time PCR and Western blotting, respectively. The microstructure of the ileum and the number of autophagosomes were observed by transmission electron microscopy (TEM). Analyses of HE-stained pathological ileum and inflammatory factor levels were examined to assess the extent of septic injury. The effect of HLJDD on the gut microbiota was analysed by 16S rRNA gene sequencing of faeces. Results: In this study, we identified the protective effects of HLJDD on mortality and inflammation in septic rats. Several key proteins, including LC3-II, Beclin-1 and p62, were examined and showed that HLJDD could effectively reverse the sepsis-induced decrease in autophagy. TEM was performed and the expression of Atgs was assessed to evaluate fluctuations in autophagy. Then, we examined the intestinal tight junction protein zona occludens (ZO-1), lipopolysaccharide (LPS) and inflammatory factors, and found that HLJDD effectively alleviated the increase in ZO-1 gene expression, the level of LPS and serum level of inflammatory factors caused by sepsis. These results were consistent with those obtained from pathological sectioning and TEM analysis. Moreover, autophagy activation effectively ameliorated sepsis, and autophagy inhibition exacerbated the systemic symptoms caused by infection. By examining the expression of key proteins upstream of the autophagy pathway, we found that HLJDD inhibited mTOR via the MAPK/PI3K signalling pathway to promote autophagy in septic rats. 16S rRNA sequencing revealed that HLJDD significantly affected the diversity and physiological function of the gut microbiota in septic rats. Conclusions: The results of this study indicate that autophagy activation is a potential mechanism underlying the protective effect of HLJDD on the intestine in septic rats

    Mesenchymal Stem Cells Inhibit Epithelial-to-Mesenchymal Transition by Modulating the IRE1Îą Branch of the Endoplasmic Reticulum Stress Response

    No full text
    Background. Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial lung disease, and it carries a poor prognosis due to a lack of efficient diagnosis methods and treatments. Epithelial-mesenchymal transition (EMT) plays a key role in IPF pathogenesis. Endoplasmic reticulum (ER) stress contributes to fibrosis via EMT-mediated pathways. Mesenchymal stem cell (MSC) transplantation is a promising treatment strategy for pulmonary fibrosis and ameliorates lung fibrosis in animal models via paracrine effects. However, the specific mechanisms underlying the effect of transplanted MSCs are not known. We previously reported that MSCs attenuate endothelial injury by modulating ER stress and endothelial-to-mesenchymal transition. The present study investigated whether modulation of ER stress- and EMT-related pathways plays essential roles in MSC-mediated alleviation of IPF. Methods and Results. We constructed a A549 cell model of transforming growth factor-β1 (TGF-β1)-induced fibrosis. TGF-β1 was used to induce EMT in A549 cells, and MSC coculture decreased EMT, as indicated by increased E-cadherin levels and decreased vimentin levels. ER stress participated in TGF-β1-induced EMT in A549 cells, and MSCs inhibited the expression of XBP-1s, XBP-1u, and BiP, which was upregulated by TGF-β1. Inhibition of ER stress contributed to MSC-mediated amelioration of EMT in A549 cells, and modulation of the IRE1ι-XBP1 branch of the ER stress pathway may have played an important role in this effect. MSC transplantation alleviated bleomycin (BLM)-induced pulmonary fibrosis in mice. MSC treatment decreased the expression of ER stress- and EMT-related genes and proteins, and the most obvious effect of MSC treatment was inhibition of the IRE1ι/XBP1 pathway. Conclusions. The present study demonstrated that MSCs decrease EMT by modulating ER stress and that blockade of the IRE1ι-XBP1 pathway may play a critical role in this effect. The current study provides novel insight for the application of MSCs for IPF treatment and elucidates the mechanism underlying the preventive effects of MSCs against pulmonary fibrosis

    Insight into over Repair of Hot Carrier Degradation by GIDL Current in Si p-FinFETs Using Ultra-Fast Measurement Technique

    No full text
    In this article, an experimental study on the gate-induced drain leakage (GIDL) current repairing worst hot carrier degradation (HCD) in Si p-FinFETs is investigated with the aid of an ultra-fast measurement (UFM) technique (~30 μs). It is found that increasing GIDL bias from 3 V to 4 V achieves a 114.7% VT recovery ratio from HCD. This over-repair phenomenon of HCD by UFM GIDL is deeply discussed through oxide trap behaviors. When the applied gate-to-drain GIDL bias reaches 4 V, a significant electron trapping and interface trap generation of the fresh device with GIDL repair is observed, which greatly contributes to the approximate 114.7% over-repair VT ratio of the device under worst HCD stress (−2.0 V, 200 s). Based on the TCAD simulation results, the increase in the vertical electric field on the surface of the channel oxide layer is the direct cause of an extraordinary electron trapping effect accompanied by the over-repair phenomenon. Under a high positive electric field, a part of channel electrons is captured by oxide traps in the gate dielectric, leading to further VT recovery. Through the discharge-based multi-pulse (DMP) technique, the energy distribution of oxide traps after GIDL recovery is obtained. It is found that over-repair results in a 34% increment in oxide traps around the conduction energy band (Ec) of silicon, which corresponds to a higher stabilized VT shift under multi-cycle HCD-GIDL tests. The results provide a trap-based understanding of the transistor repairing technique, which could provide guidance for the reliable long-term operation of ICs

    Continuous epitaxy of single-crystal graphite films by isothermal carbon diffusion through nickel

    No full text
    Multilayer van der Waals (vdW) film materials have attracted extensive interest from the perspective of both fundamental research' and technology(4-7). However, the synthesis of large, thick, single-crystal vdW materials remains a great challenge because the lack of out-of-plane chemical bonds weakens the epitaxial relationship between neighbouring layers'. Here we report the continuous epitaxial growth of single-crystal graphite films with thickness up to 100,000 layers on high-index, single-crystal nickel (Ni) foils. Our epitaxial graphite films demonstrate high single crystallinity, including an ultra-flat surface, centimetre-size single-crystal domains and a perfect AB-stacking structure. The exfoliated graphene shows excellent physical properties, such as a high thermal conductivity of similar to 2,880 W m(-1) K-1, intrinsic Young's modulus of similar to 1.0 TPa and low doping density of similar to 2.2 x 10(10) cm(-2). The growth of each single-crystal graphene layer is realized by step edge-guided epitaxy on a high-index Ni surface, and continuous growth is enabled by the isothermal dissolution-diffusion-precipitation of carbon atoms driven by a chemical potential gradient between the two Ni surfaces. The isothermal growth enables the layers to grow at optimal conditions, without stacking disorders or stress gradients in the final graphite. Our findings provide a facile and scalable avenue for the synthesis of high-quality, thick vdW films for various applications
    corecore