1,381 research outputs found

    A theory for molecular transport phenomena through thin membranes

    Get PDF
    Theory for molecular transport phenomena through thin membrane

    A Simple Boltzmann Transport Equation for Ballistic to Diffusive Transient Heat Transport

    Get PDF
    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, ii) that phonon transport at early times approach the ballistic limit in samples of any length, and iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions.Comment: 9 pages, 5 figure

    Simulation of the Spin Field Effect Transistors: Effects of Tunneling and Spin Relaxation on its Performance

    Get PDF
    A numerical simulation of spin-dependent quantum transport for a spin field effect transistor (spinFET) is implemented in a widely used simulator nanoMOS. This method includes the effect of both spin relaxation in the channel and the tunneling barrier between the source/drain and the channel. Account for these factors permits setting more realistic performance limits for the transistor, especially the magnetoresistance, which is found to be lower compared to earlier predictions. The interplay between tunneling and spin relaxation is elucidated by numerical simulation. Insertion of the tunneling barrier leads to an increased magnetoresistance. Numerical simulations are used to explore the tunneling barrier design issues.Comment: 31 pages, 14 figures, submitted to Journal of Applied Physic

    Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors

    Get PDF
    Electronic transport in a carbon nanotube (CNT) metal-oxide-semiconductor field effect transistor (MOSFET) is simulated using the non-equilibrium Green's functions method with the account of electron-phonon scattering. For MOSFETs, ambipolar conduction is explained via phonon-assisted band-to-band (Landau-Zener) tunneling. In comparison to the ballistic case, we show that the phonon scattering shifts the onset of ambipolar conduction to more positive gate voltage (thereby increasing the off current). It is found that the subthreshold swing in ambipolar conduction can be made as steep as 40mV/decade despite the effect of phonon scattering.Comment: 13 pages, 4 figure

    Ballisticity of nanotube FETs: Role of phonon energy and gate bias

    Get PDF
    We investigate the role of electron-phonon scattering and gate bias in degrading the drive current of nanotube MOSFETs. Our central results are: (i) Optical phonon scattering significantly decreases the drive current only when gate voltage is higher than a well-defined threshold. It means that elastic scattering mechanisms are most detrimental to nanotube MOSFETs. (ii) For comparable mean free paths, a lower phonon energy leads to a larger degradation of drive current. Thus for semiconducting nanowire FETs, the drive current will be more sensitive than carbon nanotube FETs because of the smaller phonon energies in semiconductors. (iii) Radial breathing mode phonons cause an appreciable reduction in drive current.Comment: 16 pages, 1 table, 4 figure
    • …
    corecore