110 research outputs found

    Cosmic Strings as Emitters of Extremely High Energy Neutrinos

    Full text link
    We study massive particle radiation from cosmic string kinks, and its observability in extremely high energy neutrinos. In particular, we consider the emission of moduli --- weakly coupled scalar particles predicted in supersymmetric theories --- from the kinks of cosmic string loops. Since kinks move at the speed of light on strings, moduli are emitted with large Lorentz factors, and eventually decay into many pions and neutrinos via hadronic cascades. The produced neutrino flux has energy E1011GeVE \gtrsim 10^{11} \rm{GeV}, and is affected by oscillations and absorption (resonant and non-resonant). It is observable at upcoming neutrino telescopes such as JEM-EUSO, and the radio telescopes LOFAR and SKA, for a range of values of the string tension, and of the mass and coupling constant of the moduli.Comment: 13 pages, 2 figure

    Probing the neutrino mass hierarchy and the 13-mixing with supernovae

    Get PDF
    We consider in details the effects of the 13-mixing (sin^2 theta_{13}) and of the type of mass hierarchy/ordering (sign[ Delta m^2_{13}]) on neutrino signals from the gravitational collapses of stars. The observables (characteristics of the energy spectra of nu_e and antinu_e events) sensitive to sin^2 theta_{13} and sign[Delta m^2_{13}] have been calculated. They include the ratio of average energies of the spectra, r_E = /, the ratio of widths of the energy distributions, r_Gamma, the ratios of total numbers of nu_e and antinu_e events at low energies, S, and in the high energy tails, R_{tail}. We construct and analyze scatter plots which show the predictions for the observables for different intervals of sin^2 theta_{13} and signs of Delta m^2_{13}, taking into account uncertainties in the original neutrino spectra, the star density profile, etc.. Regions in the space of observables r_E, r_Gamma, S, R_{tail} exist in which certain mass hierarchy and intervals of sin^2 theta_{13} can be identified or discriminated. We elaborate on the method of the high energy tails in the spectra of events. The conditions are formulated for which sin^2 theta_{13} can be (i) measured, (ii) restricted from below, (iii) restricted from above. We comment on the possibility to determine sin^2 theta_{13} using the time dependence of the signals due to the propagation of the shock wave through the resonance layers of the star. We show that the appearance of the delayed Earth matter effect in one of the channels (nu_e or antinu_e) in combination with the undelayed effect in the other channel will allow to identify the shock wave appeareance and determine the mass hierarchy.Comment: LaTeX, 56 pages, 12 figures; a few clarifications added; typos corrected. Version to appear in JCA

    Detecting the Neutrino Mass Hierarchy with a Supernova at IceCube

    Full text link
    IceCube, a future km^3 antarctic ice Cherenkov neutrino telescope, is highly sensitive to a galactic supernova (SN) neutrino burst. The Cherenkov light corresponding to the total energy deposited by the SN neutrinos in the ice can be measured relative to background fluctuations with a statistical precision much better than 1%. If the SN is viewed through the Earth, the matter effect on neutrino oscillations can change the signal by more than 5%, depending on the flavor-dependent source spectra and the neutrino mixing parameters. Therefore, IceCube together with another high-statistics experiment like Hyper-Kamiokande can detect the Earth effect, an observation that would identify specific neutrino mixing scenarios that are difficult to pin down with long-baseline experiments. In particular, the normal mass hierarchy can be clearly detected if the third mixing angle is not too small, sin^2 theta_13 < 10^-3. The small flavor-dependent differences of the SN neutrino fluxes and spectra that are found in state-of-the-art simulations suffice for this purpose. Although the absolute calibration uncertainty at IceCube may exceed 5%, the Earth effect would typically vary by a large amount over the duration of the SN signal, obviating the need for a precise calibration. Therefore, IceCube with its unique geographic location and expected longevity can play a decisive role as a "co-detector" to measure SN neutrino oscillations. It is also a powerful stand-alone SN detector that can verify the delayed-explosion scenario.Comment: 19 pages, 6 Figs, final version accepted by JCAP, some references adde

    Supernova Neutrinos, Neutrino Oscillations, and the Mass of the Progenitor Star

    Full text link
    We investigate the initial progenitor mass dependence of the early-phase neutrino signal from supernovae taking neutrino oscillations into account. The early-phase analysis has advantages in that it is not affected by the time evolution of the density structure of the star due to shock propagation or whether the remnant is a neutron star or a black hole. The initial mass affects the evolution of the massive star and its presupernova structure, which is important for two reasons when considering the neutrino signal. First, the density profile of the mantle affects the dynamics of neutrino oscillation in supernova. Second, the final iron core structure determines the features of the neutrino burst, i.e., the luminosity and the average energy. We find that both effects are rather small. This is desirable when we try to extract information on neutrino parameters from future supernova-neutrino observations. Although the uncertainty due to the progenitor mass is not small for intermediate θ13\theta_{13} (105sin22θ1310310^{-5} \lesssim \sin^{2}{2 \theta_{13}} \lesssim 10^{-3}), we can, nevertheless, determine the character of the mass hierarchy and whether θ13\theta_{13} is very large or very small.Comment: 8 pages, 15 figure

    Supernova pointing with low- and high-energy neutrino detectors

    Full text link
    A future galactic SN can be located several hours before the optical explosion through the MeV-neutrino burst, exploiting the directionality of ν\nu-ee-scattering in a water Cherenkov detector such as Super-Kamiokande. We study the statistical efficiency of different methods for extracting the SN direction and identify a simple approach that is nearly optimal, yet independent of the exact SN neutrino spectra. We use this method to quantify the increase in the pointing accuracy by the addition of gadolinium to water, which tags neutrons from the inverse beta decay background. We also study the dependence of the pointing accuracy on neutrino mixing scenarios and initial spectra. We find that in the ``worst case'' scenario the pointing accuracy is 88^\circ at 95% C.L. in the absence of tagging, which improves to 33^\circ with a tagging efficiency of 95%. At a megaton detector, this accuracy can be as good as 0.60.6^\circ. A TeV-neutrino burst is also expected to be emitted contemporaneously with the SN optical explosion, which may locate the SN to within a few tenths of a degree at a future km2^2 high-energy neutrino telescope. If the SN is not seen in the electromagnetic spectrum, locating it in the sky through neutrinos is crucial for identifying the Earth matter effects on SN neutrino oscillations.Comment: 13 pages, 7 figures, Revtex4 format. The final version to be published in Phys. Rev. D. A few points in the original text are clarifie

    Supernova neutrinos and antineutrinos: ternary luminosity diagram and spectral split patterns

    Get PDF
    In core-collapse supernovae, the nu_e and anti-nu_e species may experience collective flavor swaps to non-electron species nu_x, within energy intervals limited by relatively sharp boundaries ("splits"). These phenomena appear to depend sensitively upon the initial energy spectra and luminosities. We investigate the effect of generic variations of the fractional luminosities (l_e, l_{anti-e}, l_x) with respect to the usual "energy equipartition" case (1/6, 1/6, 1/6), within an early-time supernova scenario with fixed thermal spectra and total luminosity. We represent the constraint l_e+l_{anti-e}+4l_x=1 in a ternary diagram, which is explored via numerical experiments (in single-angle approximation) over an evenly-spaced grid of points. In inverted hierarchy, single splits arise in most cases, but an abrupt transition to double splits is observed for a few points surrounding the equipartition one. In normal hierarchy, collective effects turn out to be unobservable at all grid points but one, where single splits occur. Admissible deviations from equipartition may thus induce dramatic changes in the shape of supernova (anti)neutrino spectra. The observed patterns are interpreted in terms of initial flavor polarization vectors (defining boundaries for the single/double split transitions), lepton number conservation, and minimization of potential energy.Comment: 24 pages, including 14 figures (1 section with 2 figures added). Accepted for publication in JCA

    Exploiting the neutronization burst of a galactic supernova

    Full text link
    One of the robust features found in simulations of core-collapse supernovae (SNe) is the prompt neutronization burst, i.e. the first 25\sim 25 milliseconds after bounce when the SN emits with very high luminosity mainly νe\nu_e neutrinos. We examine the dependence of this burst on variations in the input of current SN models and find that recent improvements of the electron capture rates as well as uncertainties in the nuclear equation of state or a variation of the progenitor mass have only little effect on the signature of the neutronization peak in a megaton water Cherenkov detector for different neutrino mixing schemes. We show that exploiting the time-structure of the neutronization peak allows one to identify the case of a normal mass hierarchy and large 13-mixing angle θ13\theta_{13}, where the peak is absent. The robustness of the predicted total event number in the neutronization burst makes a measurement of the distance to the SN feasible with a precision of about 5%, even in the likely case that the SN is optically obscured.Comment: 14 pages, 17 eps figures, revtex4 style, minor comments adde

    Supernova neutrino oscillations: what do we understand?

    Get PDF
    We summarize our current understanding of the neutrino flavor conversions inside a core collapse supernova, clarifying the important role played by the "collective effects" in determining flavor conversion probabilities. The potentially observable νe\nu_e and νˉe\bar{\nu}_e spectra may help us identify the neutrino mixing scenario, distinguish between primary flux models, and learn more about the supernova explosion.Comment: 6 pages, 1 eps figure, jpconf.cls used. Talk given at TAUP 2009, Rome, July 200

    Oscillation effects on supernova neutrino rates and spectra and detection of the shock breakout in a liquid Argon TPC

    Full text link
    A liquid Argon TPC (ICARUS-like) has the ability to detect clean neutrino bursts from type-II supernova collapses. In this paper, we consider for the first time the four possible detectable channels, namely, the elastic scattering on electrons from all neutrino species, νe\nu_e charged current absorption on ArAr with production of excited KK, νˉe\bar\nu_e charged current absorption on ArAr with production of excited ClCl and neutral current interactions on ArAr from all neutrino flavors. We compute the total rates and energy spectra of supernova neutrino events including the effects of the three--flavor neutrino oscillation with matter effects in the propagation in the supernova. Results show a dramatic dependence on the oscillation parameters and in the energy spectrum, especially for charged-current events. The shock breakout phase has also been investigated using recent simulations of the core collapse supernova. We stress the importance of the neutral current signal to decouple supernova from neutrino oscillation physics.Comment: 40 pages, 19 figures, version v2 accepted for publication in JCAP. accepted in JCA

    Mini Z' Burst from Relic Supernova Neutrinos and Late Neutrino Masses

    Full text link
    In models in which neutrinos are light, due to a low scale of symmetry breaking, additional light bosons are generically present. We show that the interaction between diffuse relic supernova neutrinos (RSN) and the cosmic background neutrinos, via exchange of these light scalars, can result in a dramatic change of the supernova (SN) neutrinos flux. Measurement of this effect with current or future experiments can provide a spectacular direct evidence for the low scale models. We demonstrate how the observation of neutrinos from SN1987A constrains the symmetry breaking scale of the above models. We also discuss how current and future experiments may confirm or further constrain the above models, either by detecting the ``accumulative resonance'' that diffuse RSN go through or via a large suppression of the flux of neutrinos from nearby < O(Mpc) SN bursts.Comment: 24 pages, 8 figures, version to be published in JHE
    corecore