2,542 research outputs found

    The dynamics of laser droplet generation

    Full text link
    We propose an experimental setup allowing for the characterization of laser droplet generation in terms of the underlying dynamics, primarily showing that the latter is deterministically chaotic by means of nonlinear time series analysis methods. In particular, we use a laser pulse to melt the end of a properly fed vertically placed metal wire. Due to the interplay of surface tension, gravity force and light-metal interaction, undulating pendant droplets are formed at the molten end, which eventually completely detach from the wire as a consequence of their increasing mass. We capture the dynamics of this process by employing a high-speed infrared camera, thereby indirectly measuring the temperature of the wire end and the pendant droplets. The time series is subsequently generated as the mean value over the pixel intensity of every infrared snapshot. Finally, we employ methods of nonlinear time series analysis to reconstruct the phase space from the observed variable and test it against determinism and stationarity. After establishing that the observed laser droplet generation is a deterministic and dynamically stationary process, we calculate the spectra of Lyapunov exponents. We obtain a positive largest Lyapunov exponent and a negative divergence, i.e., sum of all the exponents, thus indicating that the observed dynamics is deterministically chaotic with an attractor as solution in the phase space. In addition to characterizing the dynamics of laser droplet generation, we outline industrial applications of the process and point out the significance of our findings for future attempts at mathematical modeling.Comment: 7 two-column pages, 8 figures; accepted for publication in Chaos [supplementary material available at http://www.matjazperc.com/chaos/laser.html

    Effect of next-nearest neighbor coupling on the optical spectra in bilayer graphene

    Full text link
    We investigate the dependence of the optical conductivity of bilayer graphene (BLG) on the intra- and inter-layer interactions using the most complete model to date. We show that the next nearest-neighbor intralayer coupling introduces new features in the low-energy spectrum that are highly sensitive to sample doping, changing significantly the ``universal'' conductance. Further, its interplay with interlayer couplings leads to an anisotropy in conductance in the ultraviolet range. We propose that experimental measurement of the optical conductivity of intrinsic and doped BLG will provide a good benchmark for the relative importance of intra- and inter-layer couplings at different doping levels.Comment: 5 pages, 5 figure

    Trion induced negative photoconductivity in monolayer MoS2

    Full text link
    Optical excitation typically enhances electrical conduction and low-frequency radiation absorption in semiconductors. We have, however, observed a pronounced transient decrease of conductivity in doped monolayer molybdenum disulfide (MoS2), a two-dimensional (2D) semiconductor, under femtosecond laser excitation. In particular, the conductivity is reduced dramatically down to only 30% of its equilibrium value with high pump fluence. This anomalous phenomenon arises from the strong many-body interactions in the system, where photoexcited electron-hole pairs join the doping-induced charges to form trions, bound states of two electrons and one hole. The resultant increase of the carrier effective mass substantially diminishes the carrier conductivity

    Photo-disintegration cross section measurements on 186^{186}W, 187^{187}Re and 188^{188}Os: Implications for the Re-Os cosmochronology

    Full text link
    Cross sections of the 186^{186}W, 187^{187}Re, 188^{188}Os(γ,n\gamma,n) reactions were measured using quasi-monochromatic photon beams from laser Compton scattering (LCS) with average energies from 7.3 to 10.9 MeV. The results are compared with the predictions of Hauser-Feshbach statistical calculations using four different sets of input parameters. In addition, the inverse neutron capture cross sections were evaluated by constraining the model parameters, especially the E1E1 strength function, on the basis of the experimental data. The present experiment helps to further constrain the correction factor FσF_{\sigma} for the neutron capture on the 9.75 keV state in 187^{187}Os. Implications of FσF_{\sigma} to the Re-Os cosmochronology are discussed with a focus on the uncertainty in the estimate of the age of the Galaxy.Comment: 11 page

    A Bayesian approach to wavelet-based modelling of discontinuous functions applied to inverse problems

    Get PDF
    Inverse problems are examples of regression with more unknowns than the amount of information in the data and hence constraints are imposed through prior information. The proposed method defines the underlying function as a wavelet approximation which is related to the data through a convolution. The wavelets provide a sparse and multi-resolution solution which can capture local behaviour in an adaptive way. Varied prior models are considered along with level-specific prior parameter estimation. Archaeological stratigraphy data are considered where vertical earth cores are analysed producing clear piecewise constant function estimates

    Generator Coordinate Method Calculations for Ground and First Excited Collective States in 4^{4}He, 16^{16}O and 40^{40}Ca Nuclei

    Get PDF
    The main characteristics of the ground and, in particular, the first excited monopole state in the 4^{4}He, 16^{16}O and 40^{40}Ca nuclei are studied within the generator coordinate method using Skyrme-type effective forces and three construction potentials, namely the harmonic-oscillator, the square-well and Woods-Saxon potentials. Calculations of density distributions, radii, nucleon momentum distributions, natural orbitals, occupation numbers and depletions of the Fermi sea, as well as of pair density and momentum distributions are carried out. A comparison of these quantities for both ground and first excited monopole states with the available empirical data and with the results of other theoretical methods are given and discussed in detail.Comment: 15 pages, LaTeX, 6 Postscript figures, submitted to EPJ

    Pair production of the T-odd leptons at the LHC

    Full text link
    The T-odd leptons predicted by the littlest HiggsHiggs model with T-parity can be pair produced via the subprocesses gg→ℓH+ℓH−gg\to \ell^{+}_{H}\ell^{-}_{H}, qqˉ→ℓH+ℓH−q\bar{q}\to \ell^{+}_{H}\ell^{-}_{H}, γγ→ℓH+ℓH−\gamma\gamma\to \ell^{+}_{H}\ell^{-}_{H} and VV→ℓH+ℓH− VV \to \ell^{+}_{H}\ell^{-}_{H} (VV=WW or ZZ) at the CERNCERN Large Hadron Collider (LHC)(LHC). We estimate the hadronic production cross sections for all of these processes and give a simply phenomenology analysis. We find that the cross sections for most of the above processes are very small. However, the value of the cross section for the Drell−YanDrell-Yan process qqˉ→ℓH+ℓH−q\bar{q}\to \ell^{+}_{H}\ell^{-}_{H} can reach 270fb270fb.Comment: 12 pages, 2 figure

    Prelude to THEMIS tail conjunction study

    Get PDF
    A close conjunction of several satellites (LANL, GOES, Polar, Geotail, and Cluster) distributed from the geostationary altitude to about 16 <I>R<sub>E</sub></I> downstream in the tail occurred during substorm activity as indicated by global auroral imaging and ground-based magnetometer data. This constellation of satellites resembles what is planned for the THEMIS (Time History of Events and Macroscopic Interactions during Substorms) mission to resolve the substorm controversy on the location of the substorm expansion onset region. In this article, we show in detail the dipolarization and dynamic changes seen by these satellites associated with two onsets of substorm intensification activity. In particular, we find that dipolarization at ~16 <I>R<sub>E</sub></I> downstream in the tail can occur with dawnward electric field and without plasma flow, just like some near-Earth dipolarization events reported previously. The spreading of substorm disturbances in the tail coupled with complementary ground observations indicates that the observed time sequence on the onsets of substorm disturbances favors initiation in the near-Earth region for this THEMIS-like conjunction
    • …
    corecore