110,886 research outputs found
Gaussian Effective Potential and the Coleman's normal-ordering Prescription : the Functional Integral Formalism
For a class of system, the potential of whose Bosonic Hamiltonian has a
Fourier representation in the sense of tempered distributions, we calculate the
Gaussian effective potential within the framework of functional integral
formalism. We show that the Coleman's normal-ordering prescription can be
formally generalized to the functional integral formalism.Comment: 6 pages, revtex; With derivation details and an example added. To
appear in J. Phys.
Flat lens without optical axis: Theory of imaging
We derive a general theory for imaging by a flat lens without optical axis.
We show that the condition for imaging requires a material having elliptic
dispersion relations with negative group refraction, equivalent to an effective
anisotropic refractive index n(theta). Imaging can be achieved with both
negative (n0) refractive indices. The Veselago-Pendry lens
is a special case with isotropic negative refractive index of n(theta)=-1.
Realizations of the imaging conditions using anisotropic media and
inhomogeneous media, particularly photonic crystals, are discussed. Numerical
examples of imaging and requirements for sub-wavelength imaging are also
presented.Comment: 5 pages, 4 figure
Recommended from our members
Coupled thermo-mechanical damage modelling for structural steel in fire conditions
This paper aims at developing a coupled thermo-mechanical damage model for structural 6 steel at elevated temperatures. The need for adequate modelling of steel deterioration behaviour 7 remains a challenging task in structural fire engineering because of the complexity inherent in 8 the damage states of steel under combined actions of mechanical and fire loading. A fully three9 dimensional damage-coupled constitutive model is developed in this work based on the hypothesis 10 of effective stress space and isotropic damage theory. The new coupling model, adapted from 11 an enhanced Lemaitre’s ductile damage equation and taking into account temperature-dependent 12 thermal degradation, is a phenomenological approach where the underlying mechanisms that govern 13 the damage processes have been retained. The proposed damage model comprises a limited number 14 of parameters that could be identified using unloading slopes of stress-strain relationships through 15 tensile coupon tests. The proposed damage model is successfully implemented in the finite element 16 software ABAQUS and validated against a comprehensive range of experimental results. The 17 damage-affected structural response is accurately reproduced under various loading conditions and 18 a wide temperature range, demonstrating that the proposed damage model is a useful tool in giving a 19 realistic representation of steel deterioration behaviour for structural fire engineering applications
Recommended from our members
A novel improved model for building energy consumption prediction based on model integration
Building energy consumption prediction plays an irreplaceable role in energy planning, management, and conservation. Constantly improving the performance of prediction models is the key to ensuring the efficient operation of energy systems. Moreover, accuracy is no longer the only factor in revealing model performance, it is more important to evaluate the model from multiple perspectives, considering the characteristics of engineering applications. Based on the idea of model integration, this paper proposes a novel improved integration model (stacking model) that can be used to forecast building energy consumption. The stacking model combines advantages of various base prediction algorithms and forms them into “meta-features” to ensure that the final model can observe datasets from different spatial and structural angles. Two cases are used to demonstrate practical engineering applications of the stacking model. A comparative analysis is performed to evaluate the prediction performance of the stacking model in contrast with existing well-known prediction models including Random Forest, Gradient Boosted Decision Tree, Extreme Gradient Boosting, Support Vector Machine, and K-Nearest Neighbor. The results indicate that the stacking method achieves better performance than other models, regarding accuracy (improvement of 9.5%–31.6% for Case A and 16.2%–49.4% for Case B), generalization (improvement of 6.7%–29.5% for Case A and 7.1%-34.6% for Case B), and robustness (improvement of 1.5%–34.1% for Case A and 1.8%–19.3% for Case B). The proposed model enriches the diversity of algorithm libraries of empirical models
Recommended from our members
A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost
Due to reducing the reliance of buildings on fossil fuels, Passive House (PH) is receiving more and more attention. It is important that integrated optimization of passive performance by considering energy demand, cost and thermal comfort. This paper proposed a set three-stage multi-objective optimization method that combines redundancy analysis (RDA), Gradient Boosted Decision Trees (GBDT) and Non-dominated sorting genetic algorithm (NSGA-II) for PH design. The method has strong engineering applicability, by reducing the model complexity and improving efficiency. Among then, the GBDT algorithm was first applied to the passive performance optimization of buildings, which is used to build meta-models of building performance. Compared with the commonly used meta-model, the proposed models demonstrate superior robustness with the standard deviation at 0.048. The optimization results show that the energy-saving rate is about 88.2% and the improvement of thermal comfort is about 37.8% as compared to the base-case building. The economic analysis, the payback period were used to integrate initial investment and operating costs, the minimum payback period and uncomfortable level of Pareto frontier solution are 0.48 years and 13.1%, respectively. This study provides the architects rich and valuable information about the effects of the parameters on the different building performance
- …