5,538 research outputs found

    Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere

    Get PDF
    The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore-scale phosphorite depositions formed almost at approximately 2.0-2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and how it constrained primary productivity in the anaerobic world of Archean-Palaeoproterozoic eons are still open questions. The controversy centers about whether the precipitation of ultrafine ferric oxyhydroxide due to the microbial Fe(II) oxidation in oceans earlier than 1.9 billion years substantially sequestrated phosphate, and whether this process significantly limited the primary productivity of the early biosphere. In this study, we report apatite radial flowers of a few micrometers in the 2728 million-year-old Abitibi banded iron formation and the 2460 million-year-old Kuruman banded iron formation and their similarities to those in the 535 million-year-old Lower Cambrian phosphorite. The lithology of the 535 Million-year-old phosphorite as a biosignature bears abundant biomarkers that reveal the possible similar biogeochemical cycling of phosphorus in the Later Archean and Palaeoproterozoic oceans. These apatite radial flowers represent the primary precipitation of phosphate derived from the phytoplankton blooms in the euphotic zones of Neoarchean and Palaoeproterozoic oceans. The unbiased distributions of the apatite radial flowers within sub-millimeter bands do not support the idea of an Archean Crisis of Phosphate. This is the first report of the microbial mediated mineralization of phosphorus before the Great Oxidation Event when the whole biosphere was still dominated by anaerobic microorganisms.published_or_final_versio

    A method for estimating the instantaneous frequency of non-stationary heart sound signals

    Get PDF
    Practical signals such as speech, biomedical measurement and communications turn out to be extremely non-stationary and nonlinear time series. Traditional FFT-based power spectral analysis fails to deal with these transient signals. To provide more efficient way for investigating non-stationary and nonlinear signals with high time-frequency resolution and extract more information regarding the transient frequency features involved in the signals, a novel method based on the instantaneous frequency distribution is developed in this paper to provide the time-frequency distribution of the practical signals. The aim of this contribution is to explore the role that both empirical mode decomposition and Hilbert transform can be used to play in such practical signals. Both simulation and experimental results were presented and analyzed to demonstrate the power and effectiveness of the proposed new time-frequency distribution.published_or_final_versio

    Analysis of time-varying synchronization of multi-channel EEG signals using wavelet coherence

    Get PDF
    This paper proposes a novel method based on the time-frequency coherent representation for quantifying synchronization of multi-channel signals with high resolution. The presented wavelet-coherent technique provides the information regarding both the degree of coherence and the relation of phase difference. The wavelet coherence enables to provide the synchronization and the direction of information flow between two-channel signals. In addition, real EEG recordings are collected based on the cognitive targets during sentences identification and the wavelet coherence is employed for the analysis of the multi-channel EEG signals. It is observed from both the magnitude spectra and phase of the wavelet coherence that there are obvious differences between two kinds of cognitive activities. Finally, some results are illustrated with both simulation and real EEG lime series to show the effectiveness of the method.published_or_final_versio

    Effects of stitching on delamination of satin weave carbon-epoxy laminates under mode I, mode II and mixed-mode I/II loadings

    Get PDF
    The objective of the present study is to characterize the effect of modified chain stitching on the delamination growth under mixed-mode I/II loading conditions. Delamination toughness under mode I is experimentally determined, for unstitched and stitched laminates, by using untabbed and tabbed double cantilever beam (TDCB) tests. The effect of the reinforcing tabs on mode I toughness is investigated. Stitching improves the energy release rate (ERR) up to 4 times in mode I. Mode II delamination toughness is evaluated in end-notched flexure (ENF) tests. Different geometries of stitched specimens are tested. Crack propagation occurs without any failure of stitching yarns. The final crack length attains the mid-span or it stops before and the specimen breaks in bending. The ERR is initially low and gradually increases with crack length to very high values. The mixedmode delamination behaviour is investigated using a mixed-mode bending (MMB) test. For unstitched specimens, a simple mixed-mode criterion is identified. For stitched specimens, stitching yarns do not break during 25% of mode I ratio tests and the ERR increase is relatively small compared to unstitched values. For 70% and 50% of mode I ratios, failures of yarns are observed during crack propagation and tests are able to capture correctly the effect of the stitching: it clearly improves the ERR for these two mixed modes, as much as threefold

    Perspectives on public involvement in health research from Singapore: The potential of a supported group model of involvement.

    Get PDF
    BACKGROUND: Singapore is an international research hub, with an emphasis on translational clinical research. Despite growing evidence of the positive impact of public involvement (PPI) in research, it remains rare in Singapore. AIMS: To investigate Singaporean public perspectives around the rationale, role and scope for being involved in health research To identify the potential, challenges, facilitators and strategies for implementing PPI in Singapore. DESIGN: Semi-structured qualitative interviews with members of the public, analysed using thematic framework analysis. RESULTS: Twenty people participated. Four main themes emerged: potential benefits; challenges; facilitators; and strategies for implementation. Whilst initially unfamiliar with the concept, all interviewees recognized potential benefits for the research itself and those involved, including researchers. PPI was seen to offer opportunities for public empowerment and strengthening of relationships and understanding between the public, academics and health professionals, resulting in more impactful research. Challenges included a Singaporean culture of passive citizenship and an education system that inculcates deferential attitudes. Facilitators comprised demographic and cultural changes, including trends towards greater individual openness and community engagement. Implementation strategies included formal government policies promoting involvement and informal community-based collaborative approaches. CONCLUSION: Given the socio-political framework in Singapore, a community-based approach has potential to address challenges to PPI and maximize impact. Careful consideration needs to be given to issues of resource and support to enable members of the public to engage in culturally sensitive and meaningful ways that will deliver research best placed to effectively address patient needs

    Virtual screening for inhibitors of the human TSLP:TSLPR interaction

    Get PDF
    The pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP) plays a pivotal role in the pathophysiology of various allergy disorders that are mediated by type 2 helper T cell (Th2) responses, such as asthma and atopic dermatitis. TSLP forms a ternary complex with the TSLP receptor (TSLPR) and the interleukin-7-receptor subunit alpha (IL-7Ra), thereby activating a signaling cascade that culminates in the release of pro-inflammatory mediators. In this study, we conducted an in silico characterization of the TSLP: TSLPR complex to investigate the drugability of this complex. Two commercially available fragment libraries were screened computationally for possible inhibitors and a selection of fragments was subsequently tested in vitro. The screening setup consisted of two orthogonal assays measuring TSLP binding to TSLPR: a BLI-based assay and a biochemical assay based on a TSLP: alkaline phosphatase fusion protein. Four fragments pertaining to diverse chemical classes were identified to reduce TSLP: TSLPR complex formation to less than 75% in millimolar concentrations. We have used unbiased molecular dynamics simulations to develop a Markov state model that characterized the binding pathway of the most interesting compound. This work provides a proof-ofprinciple for use of fragments in the inhibition of TSLP: TSLPR complexation

    Preparation and Measurement of Three-Qubit Entanglement in a Superconducting Circuit

    Full text link
    Traditionally, quantum entanglement has played a central role in foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can exhibit results at odds with classical behavior. These discrepancies increase exponentially with the number of entangled particles. When entanglement is extended from just two quantum bits (qubits) to three, the incompatibilities between classical and quantum correlation properties can change from a violation of inequalities involving statistical averages to sign differences in deterministic observations. With the ample confirmation of quantum mechanical predictions by experiments, entanglement has evolved from a philosophical conundrum to a key resource for quantum-based technologies, like quantum cryptography and computation. In particular, maximal entanglement of more than two qubits is crucial to the implementation of quantum error correction protocols. While entanglement of up to 3, 5, and 8 qubits has been demonstrated among spins, photons, and ions, respectively, entanglement in engineered solid-state systems has been limited to two qubits. Here, we demonstrate three-qubit entanglement in a superconducting circuit, creating Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88%, measured with quantum state tomography. Several entanglement witnesses show violation of bi-separable bounds by 830\pm80%. Our entangling sequence realizes the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of encoding, decoding and error-correcting steps in a feedback loop will be the next milestone for quantum computing with integrated circuits.Comment: 7 pages, 4 figures, and Supplementary Information (4 figures)
    corecore