40 research outputs found

    Mathematical Modelling of Optical Coherence Tomography

    Full text link
    In this chapter a general mathematical model of Optical Coherence Tomography (OCT) is presented on the basis of the electromagnetic theory. OCT produces high resolution images of the inner structure of biological tissues. Images are obtained by measuring the time delay and the intensity of the backscattered light from the sample considering also the coherence properties of light. The scattering problem is considered for a weakly scattering medium located far enough from the detector. The inverse problem is to reconstruct the susceptibility of the medium given the measurements for different positions of the mirror. Different approaches are addressed depending on the different assumptions made about the optical properties of the sample. This procedure is applied to a full field OCT system and an extension to standard (time and frequency domain) OCT is briefly presented.Comment: 28 pages, 5 figures, book chapte

    Development of a Management Algorithm for Post-operative Pain (MAPP) after total knee and total hip replacement: study rationale and design.

    Get PDF
    BACKGROUND: Evidence from clinical practice and the extant literature suggests that post-operative pain assessment and treatment is often suboptimal. Poor pain management is likely to persist until pain management practices become consistent with guidelines developed from the best available scientific evidence. This work will address the priority in healthcare of improving the quality of pain management by standardising evidence-based care processes through the incorporation of an algorithm derived from best evidence into clinical practice. In this paper, the methodology for the creation and implementation of such an algorithm that will focus, in the first instance, on patients who have undergone total hip or knee replacement is described. METHODS: In partnership with clinicians, and based on best available evidence, the aim of the Management Algorithm for Post-operative Pain (MAPP) project is to develop, implement, and evaluate an algorithm designed to support pain management decision-making for patients after orthopaedic surgery. The algorithm will provide guidance for the prescription and administration of multimodal analgesics in the post-operative period, and the treatment of breakthrough pain. The MAPP project is a multisite study with one coordinating hospital and two supporting (rollout) hospitals. The design of this project is a pre-implementation-post-implementation evaluation and will be conducted over three phases. The Promoting Action on Research Implementation in Health Services (PARiHS) framework will be used to guide implementation. Outcome measurements will be taken 10 weeks post-implementation of the MAPP. The primary outcomes are: proportion of patients prescribed multimodal analgesics in accordance with the MAPP; and proportion of patients with moderate to severe pain intensity at rest. These data will be compared to the pre-implementation analgesic prescribing practices and pain outcome measures. A secondary outcome, the efficacy of the MAPP, will be measured by comparing pain intensity scores of patients where the MAPP guidelines were or were not followed. DISCUSSION: The outcomes of this study have relevance for nursing and medical professionals as well as informing health service evaluation. In establishing a framework for the sustainable implementation and evaluation of a standardised approach to post-operative pain management, the findings have implications for clinicians and patients within multiple surgical contexts

    Exploring Relations Between Formative and Summative Assessment

    No full text
    International audienceSince the beginning of the twenty-first century, the concept of competence has been introduced as a new paradigm in several educational systems. It reflects the need of educational systems to respond to societal and economic changes, i.e. the transition from industrial- to information-based societies. In contrast to earlier educational goals that focused more on basic skills and knowledge expectations, competences are more functionally oriented. They involve the ability to solve complex problems in a particular context, e.g. in vocational or everyday situations. In science, technology and mathematics education, the concept of competence is closely linked to the concept of literacy. Apart from these rather cognitive and affective perspectives influenced by the need to assess students’ achievement of desired learning goals in relation to their interest and motivation, the perspectives of the concept of Bildung as well as of the labour market influence today’s definition of educational goals. In order to address these perspectives, twenty-first-century skills were defined that encompass skills believed to be critically important to success in today’s world like, e.g. innovation and communication. This chapter addresses these developments by describing the concept of competence, by explaining its relevance for science, technology and mathematics education and by examining future directions. The chapter concludes with some remarks regarding commonalities and differences between the three domains: science, technology and mathematics
    corecore