33 research outputs found

    Safe and just Earth system boundaries.

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. Data availability The data supporting Figs. 2 and 3 are available at https://doi.org/10.6084/m9.figshare.22047263.v2 and https://doi.org/10.6084/m9.figshare.20079200.v2, respectively. We rely on other published datasets for the climate boundary16, N boundary72 (model files are at https://doi.org/10.5281/zenodo.6395016), phosphorus73,74 (scenario breakdowns are at https://ora.ox.ac.uk/objects/uuid:d9676f6b-abba-48fd-8d94-cc8c0dc546a2, and a summary of agricultural sustainability indicators is at https://doi.org/10.5281/zenodo.5234594), current N surpluses129,130 (the repository at https://dataportaal.pbl.nl/downloads/IMAGE/GNM) with the critical N surplus limit72 subtracted, and estimated subglobal P concentration in runoff based on estimated P load to freshwater131 and local runoff data132,133. Current functional integrity is calculated from the European Space Agency WorldCover 10-metre-resolution land cover map (https://esa-worldcover.org/en). The safe boundary and current state for groundwater are derived from the Gravity Recovery And Climate Experiment (http://www2.csr.utexas.edu/grace/RL06_mascons.html) and the Global Land Data Assimilation System (https://disc.gsfc.nasa.gov/datacollection/GLDAS_NOAH025_3H_2.1.html). More information is available in ‘Code availability’ and Supplementary Methods. Source data for Fig. 2 are provided with this paper.Code availability: The code used to produce Figs. 2 and 3 are available at https://doi.org/10.6084/m9.figshare.22047263.v2 and https://doi.org/10.6084/m9.figshare.20079200.v2, respectively. The code used to make the nutrient Earth system boundary layers in Fig. 3 is available at https://doi.org/10.5281/zenodo.7636716. The code used to make the surface water layer in Fig. 3 and derive the subglobal Earth system boundaries for surface water is available at https://doi.org/10.5281/zenodo.7674802. The code to estimate current functional integrity is available at https://figshare.com/articles/software/integrity_analysis/22232749/2. The code to derive the groundwater layer in Fig. 3 and derive the total annual groundwater recharge is available at https://doi.org/10.5281/zenodo.7710540.The stability and resilience of the Earth system and human well-being are inseparably linked1-3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.Stockholm Universit

    Genetic instability in the tumor microenvironment: a new look at an old neighbor

    Get PDF

    The induction of Ethylene response factor 3 (ERF3) in potato as a result of co-inoculation with Pseudomonas sp. R41805 and Rhizophagus irregularis MUCL 41833 – a possible role in plant defense

    No full text
    Colonization of plant rhizosphere/roots by beneficial microorganisms (e.g. plant growth promoting rhizobacteria – PGPR, arbuscular mycorrhizal fungi – AMF) confers broad-spectrum resistance to virulent pathogens and is known as induced systemic resistance (ISR) and mycorrhizal-induced resistance (MIR). ISR or MIR, an indirect mechanism for biocontrol, involves complex signaling networks that are regulated by several plant hormones, the most important of which are salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). In the present study, we investigated if inoculation of potato plantlets with an AMF (Rhizophagus irregularis MUCL 41833) and a PGPR (Pseudomonas sp R41805) either alone or in combination, could elicit host defense response genes in the presence or absence of Rhizoctonia Solani EC-1, a major potato pathogen. RT-qPCR revealed the significant expression of ethylene response factor 3 (EFR3) in mycorrhized potato plantlets inoculated with Pseudomonas sp R41805 and also in mycorrhized potato plantlets inoculated with Pseudomonas sp R41805 and challenged with R. solani. The significance of ethylene response factors (ERFs) in pathogen defense has been well documented in the literature. The results of the present study suggest that the dual inoculation of potato with PGPR and AMF may play a part in the activation of plant systemic defense systems via ERF3

    The Strategic Impact of META-NET on the Regional, National and International Level

    No full text
    This article provides an overview of the dissemination work carried out in META-NET from 2010 until early 2014; we describe its impact on the regional, national and international level, mainly with regard to politics and the situation of funding for LT topics. This paper documents the initiative’s work throughout Europe in order to boost progress and innovation in our field

    The hierarchical cluster analysis of oral health attitudes and behaviour using the Hiroshima University - Dental Behavioural Inventory (HU-DBI) among final year dental students in 17 countries

    Get PDF
    Objective: To explore and describe international oral health attitudes/behaviours among final year dental students. Methods: Validated translated versions of the Hiroshima University-Dental Behavioural Inventory (HU-DBI) questionnaire were administered to 1,096 final-year dental students in 17 countries. Hierarchical cluster analysis was conducted within the data to detect patterns and groupings. Results: The overall response rate was 72%. The cluster analysis identified two main groups among the countries. Group 1 consisted of twelve countries: one Oceanic (Australia), one Middle-Eastern (Israel), seven European (Northern Ireland, England, Finland, Greece, Germany, Italy, and France) and three Asian (Korea, Thailand and Malaysia) countries. Group 2 consisted of five countries: one South American (Brazil), one European (Belgium) and three Asian (China, Indonesia and Japan) countries. The percentages of 'agree' responses in three HU-DBI questionnaire items were significantly higher in Group 2 than in Group 1. They include: "I worry about the colour of my teeth."; "I have noticed some white sticky deposits on my teeth."; and "I am bothered by the colour of my gums." Conclusion: Grouping the countries into international clusters yielded useful information for dentistry and dental education. © 2006 FDI/World Dental Press.link_to_subscribed_fulltex
    corecore