11 research outputs found

    The hippocampal sharp wave–ripple in memory retrieval for immediate use and consolidation

    No full text
    Various cognitive functions have long been known to require the hippocampus. Recently, progress has been made in identifying the hippocampal neural activity patterns that implement these functions. One such pattern is the sharp wave-ripple (SWR), an event associated with highly synchronous neural firing in the hippocampus and modulation of neural activity in distributed brain regions. Hippocampal spiking during SWRs can represent past or potential future experience, and SWR-related interventions can alter subsequent memory performance. These findings and others suggest that SWRs support both memory consolidation and memory retrieval for processes such as decision-making. In addition, studies have identified distinct types of SWR based on representational content, behavioural state and physiological features. These various findings regarding SWRs suggest that different SWR types correspond to different cognitive functions, such as retrieval and consolidation. Here, we introduce another possibility - that a single SWR may support more than one cognitive function. Taking into account classic psychological theories and recent molecular results that suggest that retrieval and consolidation share mechanisms, we propose that the SWR mediates the retrieval of stored representations that can be utilized immediately by downstream circuits in decision-making, planning, recollection and/or imagination while simultaneously initiating memory consolidation processes

    Closed-Loop Systems and In Vitro Neuronal Cultures: Overview and Applications

    No full text
    One of the main limitations preventing the realization of a successful dialogue between the brain and a putative enabling device is the intricacy of brain signals. In this perspective, closed-loop in vitro systems can be used to investigate the interactions between a network of neurons and an external system, such as an interacting environment or an artificial device. In this chapter, we provide an overview of closed-loop in vitro systems, which have been developed for investigating potential neuroprosthetic applications. In particular, we first explore how to modify or set a target dynamical behavior in a network of neurons. We then analyze the behavior of in vitro systems connected to artificial devices, such as robots. Finally, we provide an overview of biological neuronal networks interacting with artificial neuronal networks, a configuration currently offering a promising solution for clinical applications

    Behavioral Models of Aging in Nonhuman Primates

    No full text

    ATLAS: Technical proposal for a general-purpose p p experiment at the Large Hadron Collider at CERN

    No full text

    ATLAS calorimeter performance

    No full text
    corecore