481 research outputs found

    Nanofluids Research: Key Issues

    Get PDF
    Nanofluids are a new class of fluids engineered by dispersing nanometer-size structures (particles, fibers, tubes, droplets) in base fluids. The very essence of nanofluids research and development is to enhance fluid macroscopic and megascale properties such as thermal conductivity through manipulating microscopic physics (structures, properties and activities). Therefore, the success of nanofluid technology depends very much on how well we can address issues like effective means of microscale manipulation, interplays among physics at different scales and optimization of microscale physics for the optimal megascale properties. In this work, we take heat-conduction nanofluids as examples to review methodologies available to effectively tackle these key but difficult problems and identify the future research needs as well. The reviewed techniques include nanofluids synthesis through liquid-phase chemical reactions in continuous-flow microfluidic microreactors, scaling-up by the volume averaging and constructal design with the constructal theory. The identified areas of future research contain microfluidic nanofluids, thermal waves and constructal nanofluids

    G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tazarotene-induced gene 1 (TIG1) is a retinoid-inducible type II tumour suppressor gene. The B isoform of TIG1 (TIG1B) inhibits growth and invasion of cancer cells. Expression of TIG1B is frequently downregulated in various cancer tissues; however, the expression and activities of the TIG1A isoform are yet to be reported. Therefore, this study investigated the effects of the TIG1A and TIG1B isoforms on cell growth and gene expression profiles using colon cancer cells.</p> <p>Methods</p> <p>TIG1A and TIG1B stable clones derived from HCT116 and SW620 colon cancer cells were established using the GeneSwitch system; TIG1 isoform expression was induced by mifepristone treatment. Cell growth was assessed using the WST-1 cell proliferation and colony formation assays. RNA interference was used to examine the TIG1 mediating changes in cell growth. Gene expression profiles were determined using microarray and validated using real-time polymerase chain reaction, and Western blot analyses.</p> <p>Results</p> <p>Both TIG1 isoforms were expressed at high levels in normal prostate and colon tissues and were downregulated in colon cancer cell lines. Both TIG1 isoforms significantly inhibited the growth of transiently transfected HCT116 cells and stably expressing TIG1A and TIG1B HCT116 and SW620 cells. Expression of 129 and 55 genes was altered upon induction of TIG1A and TIG1B expression, respectively, in stably expressing HCT116 cells. Of the genes analysed, 23 and 6 genes were upregulated and downregulated, respectively, in both TIG1A and TIG1B expressing cells. Upregulation of the G-protein-coupled receptor kinase 5 (GRK5) was confirmed using real-time polymerase chain reaction and Western blot analyses in both TIG1 stable cell lines. Silencing of TIG1A or GRK5 expression significantly decreased TIG1A-mediated cell growth suppression.</p> <p>Conclusions</p> <p>Expression of both TIG1 isoforms was observed in normal prostate and colon tissues and was downregulated in colon cancer cell lines. Both TIG1 isoforms suppressed cell growth and stimulated GRK5 expression in HCT116 and SW620 cells. Knockdown of GRK5 expression alleviated TIG1A-induced growth suppression of HCT116 cells, suggesting that GRK5 mediates cell growth suppression by TIG1A. Thus, TIG1 may participate in the downregulation of G-protein coupled signaling by upregulating GRK5 expression.</p

    Synergistic study of a Danshen (Salvia Miltiorrhizae Radix et Rhizoma) and Sanqi (Notoginseng Radix et Rhizoma) combination on cell survival in EA.hy926 cells

    Get PDF
    Background: This study investigated the protective effects of the Danshen (DS) and Sanqi (SQ) herb pair on cell survival in the human cardiovascular endothelial (EA.hy926) cell line exposed to injury. Methods: Nine combination ratios of Danshen-Sanqi extracts (DS-SQ) were screened for their protective effects in the EA.hy926 cell line against two different cellular impairments induced by DL-homocysteine (Hcy) – adenosine (Ado) – tumour necrosis factors (TNF) and oxidative stress (H2O2), respectively. The type of interaction (synergistic, antagonistic, additive) between DS and SQ was analysed using a combination index (CI) model. The effects of key bioactive compounds from DS and SQ were tested using the same models. The compound from each herb that demonstrated the most potent activity in cell viability was combined to evaluate their synergistic/antagonistic interaction using CI. Results: DS-SQ ratios of 6:4 (50–300 μg/mL) produced synergistic effects (CI < 1) in restoring cell viability, reducing lactate dehydrogenase (LDH) leakage and caspase-3 expressions against Hcy-Ado-TNF. Additionally, DS-SQ 6:4 (50–150 μg/mL) was found to synergistically protect endothelial cells from impaired cellular injury induced by oxidative damage (H2O2) by restoring reduced cell viability and inhibiting excessive expression of reactive oxygen species (ROS). In particular, the combination of salvianolic acid A (SA) and ginsenoside Rb1 (Rb1) at 4:6 (1–150 μM) showed synergistic effects in preventing cytotoxic effects caused by Hcy-Ado-TNF (CI < 1). This simplified combination also demonstrated synergistic effects on H2O2-induced oxidative damage on EA.hy926 cells. Conclusions: This study provides scientific evidence to support the traditional use of the DS-SQ combination on protecting endothelial cells through their synergistic interactions

    Quercetin Inhibits IL-1β-Induced Inflammation, Hyaluronan Production and Adipogenesis in Orbital Fibroblasts from Graves' Orbitopathy

    Get PDF
    Management of Graves' orbitopathy (GO) is challenging, as no reliable, specific, and safe medical therapeutic agents have yet been developed. We investigated the effect of quercetin in primary cultured orbital fibroblasts from GO, targeting pathways of inflammation, aberrant accumulation of extracellular matrix macromolecules, and adipose tissue expansion. Quercetin significantly attenuated intercellular adhesion molecule-1 (ICAM-1), interleukin (IL) -6, IL-8, and cyclooxygenase (COX) -2 mRNA expression, and inhibited IL-1β-induced increases in ICAM-1, IL-6, and IL-8 mRNA. Increased hyaluronan production induced by IL-1β or tumor necrosis factor-α was suppressed by quercetin in a dose- and time-dependent manner. Treatment with noncytotoxic doses of quercetin inhibited accumulation of intracytoplasmic lipid droplets and resulted in a dose-dependent decrease in expression of peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein (C/EBP) α, and C/EBPβ proteins. In conclusion, inhibition of inflammation, hyaluronan production, and adipogenesis by the natural plant product quercetin in vitro provides the basis for further study of its potential use in the treatment of GO

    Chinese herb related molecules of cancer-cell-apoptosis: a minireview of progress between Kanglaite injection and related genes

    Get PDF
    Many kinds of Chinese herb had been confirmed to have the character of anti-tumor, clinical reports about anti-tumor effects of Chinese herb had also been found in recent years, but most of the reports were focused on the clinical treatment of effectiveness for Chinese herb, on the other hand, review about Chinese herbal related with molecules on cancer-cell-apoptosis was seldom, many scientists could not believe such kinds of clinical describes about anti-tumor effects for Chinese herb, because these describes were lack of molecular biology evidence. Kanglaite(KLT) injection is an anti-tumor new drug which extracts from Chinese medicine-coix seed with modern advanced pharmaceutical technology, it is also a new biphase extended-spectrum anticancer medicine, the food and drug administration(FDA) of United States also approved a phase II trial of KLT to test its efficacy in treating non-small-cell lung cancer. Some studies show it could inhibit some anti-apoptotic gene and activate some pro-apoptotic gene, its injection solution is one of the new anticancer medicine that can significantly inhibit a various kinds of tumor cells, so it has become the core of research that how to further explore KLT injection to promote tumor cell apoptosis by impacting on related genes. In this review, the relationship between KLT and some tumor cell apoptosis molecules had been discussed and reviewed generally

    A model of open-loop control of equilibrium position and stiffness of the human elbow joint

    Get PDF
    According to the equilibrium point theory, the control of posture and movement involves the setting of equilibrium joint positions (EP) and the independent modulation of stiffness. One model of EP control, the α-model, posits that stable EPs and stiffness are set open-loop, i.e. without the aid of feedback. The purpose of the present study was to explore for the elbow joint the range over which stable EPs can be set open-loop and to investigate the effect of co-contraction on intrinsic low-frequency elbow joint stiffness (
    corecore