41 research outputs found

    Steinert's syndrome presenting as anal incontinence: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Myotonic dystrophy (MD) or Steinert's syndrome is a rare cause of chronic diarrhea and anal incontinence. In the presence of chronic diarrhea and fecal incontinence with muscle weakness, neuromuscular disorders such as myotonic dystrophy should be considered in the differential diagnosis.</p> <p>Case Presentation</p> <p>We present the case of a 45-year-old Turkish man with Steinert's syndrome, who was not diagnosed until the age of 45.</p> <p>Conclusions</p> <p>In clinical practice, the persistence of diarrhea and fecal incontinence with muscle weakness should suggest that the physician perform an anal manometric study and electromyography. Neuromuscular disorders such as myotonic dystrophy should be considered in the differential diagnosis.</p

    Ubiquitous Expression of CUG or CAG Trinucleotide Repeat RNA Causes Common Morphological Defects in a Drosophila Model of RNA-Mediated Pathology

    Get PDF
    Expanded DNA repeat sequences are known to cause over 20 diseases, including Huntington’s disease, several types of spinocerebellar ataxia and myotonic dystrophy type 1 and 2. A shared genetic basis, and overlapping clinical features for some of these diseases, indicate that common pathways may contribute to pathology. Multiple mechanisms, mediated by both expanded homopolymeric proteins and expanded repeat RNA, have been identified by the use of model systems, that may account for shared pathology. The use of such animal models enables identification of distinct pathways and their ‘molecular hallmarks’ that can be used to determine the contribution of each pathway in human pathology. Here we characterise a tergite disruption phenotype in adult flies, caused by ubiquitous expression of either untranslated CUG or CAG expanded repeat RNA. Using the tergite phenotype as a quantitative trait we define a new genetic system in which to examine ‘hairpin’ repeat RNA-mediated cellular perturbation. Further experiments use this system to examine whether pathways involving Muscleblind sequestration or Dicer processing, which have been shown to mediate repeat RNA-mediated pathology in other model systems, contribute to cellular perturbation in this model

    RNA Gain-of-Function in Spinocerebellar Ataxia Type 8

    Get PDF
    Microsatellite expansions cause a number of dominantly-inherited neurological diseases. Expansions in coding-regions cause protein gain-of-function effects, while non-coding expansions produce toxic RNAs that alter RNA splicing activities of MBNL and CELF proteins. Bi-directional expression of the spinocerebellar ataxia type 8 (SCA8) CTG CAG expansion produces CUG expansion RNAs (CUGexp) from the ATXN8OS gene and a nearly pure polyglutamine expansion protein encoded by ATXN8 CAGexp transcripts expressed in the opposite direction. Here, we present three lines of evidence that RNA gain-of-function plays a significant role in SCA8: 1) CUGexp transcripts accumulate as ribonuclear inclusions that co-localize with MBNL1 in selected neurons in the brain; 2) loss of Mbnl1 enhances motor deficits in SCA8 mice; 3) SCA8 CUGexp transcripts trigger splicing changes and increased expression of the CUGBP1-MBNL1 regulated CNS target, GABA-A transporter 4 (GAT4/Gabt4). In vivo optical imaging studies in SCA8 mice confirm that Gabt4 upregulation is associated with the predicted loss of GABAergic inhibition within the granular cell layer. These data demonstrate that CUGexp transcripts dysregulate MBNL/CELF regulated pathways in the brain and provide mechanistic insight into the CNS effects of other CUGexp disorders. Moreover, our demonstration that relatively short CUGexp transcripts cause RNA gain-of-function effects and the growing number of antisense transcripts recently reported in mammalian genomes suggest unrecognized toxic RNAs contribute to the pathophysiology of polyglutamine CAG CTG disorders

    CAG repeat length in RAI1 is associated with age at onset variability in spinocerebellar ataxia type 2 (SCA2)

    No full text
    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant disorder caused by the expansion of a polymorphic (CAG)(n) tract, which is translated into an expanded polyglutamine tract in the ataxin-2 protein. Although repeat length and age at disease onset are inversely related, similar to 50% of the age at onset variance in SCA2 remains unexplained. Other familial factors have been proposed to account for at least part of this remaining variance in the polyglutamine disorders. The ability of polyglutamine tracts to interact with each other, as well as the presence of intranuclear inclusions in other polyglutamine disorders, led us to hypothesize that other GAG-containing proteins may interact with expanded ataxin-2 and affect the rate of protein accumulation, and thus influence age at onset, To test this hypothesis, we used step-wise multiple linear regression to examine 10 CAG-containing genes for possible influences on SCA2 age at onset. One locus, RAI1, contributed an additional 4.1% of the variance in SCA2 age at onset after accounting for the effect of the SCA2 expanded repeat. This locus was further studied in SCA3/Machado-Joseph disease (MJD), but did not have an effect on SCA3/MJD age at onset. This result implicates RAI1 as a possible contributor to SCA2 neurodegeneration and raises the possibility that other CAG-containing proteins may play a role in the pathogenesis of other polyglutamine disorders.9121753175

    Firm base for basal body DNA

    No full text
    corecore