669 research outputs found

    Vortex nucleation as a case study of symmetry breaking in quantum systems

    Full text link
    Mean-field methods are a very powerful tool for investigating weakly interacting many-body systems in many branches of physics. In particular, they describe with excellent accuracy trapped Bose-Einstein condensates. A generic, but difficult question concerns the relation between the symmetry properties of the true many-body state and its mean-field approximation. Here, we address this question by considering, theoretically, vortex nucleation in a rotating Bose-Einstein condensate. A slow sweep of the rotation frequency changes the state of the system from being at rest to the one containing one vortex. Within the mean-field framework, the jump in symmetry occurs through a turbulent phase around a certain critical frequency. The exact many-body ground state at the critical frequency exhibits strong correlations and entanglement. We believe that this constitutes a paradigm example of symmetry breaking in - or change of the order parameter of - quantum many-body systems in the course of adiabatic evolution.Comment: Minor change

    On the Temperature Dependence of the Shear Viscosity and Holography

    Get PDF
    We examine the structure of the shear viscosity to entropy density ratio eta/s in holographic theories of gravity coupled to a scalar field, in the presence of higher derivative corrections. Thanks to a non-trivial scalar field profile, eta/s in this setup generically runs as a function of temperature. In particular, its temperature behavior is dictated by the shape of the scalar potential and of the scalar couplings to the higher derivative terms. We consider a number of dilatonic setups, but focus mostly on phenomenological models that are QCD-like. We determine the geometric conditions needed to identify local and global minima for eta/s as a function of temperature, which translate to restrictions on the signs and ranges of the higher derivative couplings. Finally, such restrictions lead to an holographic argument for the existence of a global minimum for eta/s in these models, at or above the deconfinement transition.Comment: references adde

    Beyond Gross-Pitaevskii Mean Field Theory

    Full text link
    A large number of effects related to the phenomenon of Bose-Einstein Condensation (BEC) can be understood in terms of lowest order mean field theory, whereby the entire system is assumed to be condensed, with thermal and quantum fluctuations completely ignored. Such a treatment leads to the Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although this theory works remarkably well for a broad range of experimental parameters, a more complete treatment is required for understanding various experiments, including experiments with solitons and vortices. Such treatments should include the dynamical coupling of the condensate to the thermal cloud, the effect of dimensionality, the role of quantum fluctuations, and should also describe the critical regime, including the process of condensate formation. The aim of this Chapter is to give a brief but insightful overview of various recent theories, which extend beyond the GPE. To keep the discussion brief, only the main notions and conclusions will be presented. This Chapter generalizes the presentation of Chapter 1, by explicitly maintaining fluctuations around the condensate order parameter. While the theoretical arguments outlined here are generic, the emphasis is on approaches suitable for describing single weakly-interacting atomic Bose gases in harmonic traps. Interesting effects arising when condensates are trapped in double-well potentials and optical lattices, as well as the cases of spinor condensates, and atomic-molecular coupling, along with the modified or alternative theories needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer Verlag

    Prevalence of overweight in children and adolescents with attention deficit hyperactivity disorder and autism spectrum disorders: a chart review

    Get PDF
    BACKGROUND: The condition of obesity has become a significant public health problem in the United States. In children and adolescents, the prevalence of overweight has tripled in the last 20 years, with approximately 16.0% of children ages 6–19, and 10.3% of 2–5 year olds being considered overweight. Considerable research is underway to understand obesity in the general pediatric population, however little research is available on the prevalence of obesity in children with developmental disorders. The purpose of our study was to determine the prevalence of overweight among a clinical population of children diagnosed with attention deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). METHODS: Retrospective chart review of 140 charts of children ages 3–18 years seen between 1992 and 2003 at a tertiary care clinic that specializes in the evaluation and treatment of children with developmental, behavioral, and cognitive disorders. Diagnostic, medical, and demographic information was extracted from the charts. Primary diagnoses of either ADHD or ASD were recorded, as was information on race/ethnicity, age, gender, height, and weight. Information was also collected on medications that the child was taking. Body mass index (BMI) was calculated from measures of height and weight recorded in the child's chart. The Center for Disease Control's BMI growth reference was used to determine an age- and gender-specific BMI z-score for the children. RESULTS: The prevalence of at-risk-for-overweight (BMI >85th%ile) and overweight (BMI > 95th%ile) was 29% and 17.3% respectively in children with ADHD. Although the prevalence appeared highest in the 2–5 year old group (42.9%ile), differences among age groups were not statistically significant. Prevalence did not differ between boys and girls or across age groups (all p > 0.05). For children with ASD, the overall prevalence of at-risk-for-overweight was 35.7% and prevalence of overweight was 19%. CONCLUSION: When compared to an age-matched reference population (NHANES 1999–2002), our estimates indicate that children with ADHD and with ASD have a prevalence of overweight that is similar to children in the general population

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    The economic pressures for biosimilar drug use in cancer medicine

    Get PDF
    The main rationale for using biosimilar drugs is for cost saving. The market development for biosimilar drugs will therefore depend on the degree to which cost saving measures are required by nations, medical insurers and individuals and the absolute savings that could be gained by switching from original drugs. This paper is designed to discover the degree to which financial constraints will drive future health spending and to discover if legal or safety issues could impact on any trend. A structured literature search was performed for papers and documents to 27 August 2011. Where multiple sources of data were available on a topic, data from papers and reports by multinational or national bodies were used in preference to data from regions or individual hospitals. Almost all health systems face current significant cost pressures. The twin driver of increasing cancer prevalence as populations age and cancer medicine costs rising faster than inflation places oncology as the most significant single cost problem. For some countries, this is predicted to make medicine unaffordable within a decade. Most developed countries have planned to embrace biosimilar use as a cost-control measure. Biosimilar introduction into the EU has already forced prices down, both the price of biosimilar drugs and competitive price reductions in originator drugs. Compound annual growth rates of use have been predicted at 65.8% per year. Most developed countries have planned to embrace biosimilar use as a major cost-control measure. Only legal blocks and safety concerns are likely to act against this trend. For centralised healthcare systems, and those with a strong tradition of generic medicine use, biosimilar use will clearly rise with predictions of more than 80% of prescriptions of some biologic drugs within 1 year of market entry in the USA. Delaying the implementation of such programmes however risks a real crisis in healthcare delivery for many countries and hospitals that few can now afford

    Assessing Computational Methods of Cis-Regulatory Module Prediction

    Get PDF
    Computational methods attempting to identify instances of cis-regulatory modules (CRMs) in the genome face a challenging problem of searching for potentially interacting transcription factor binding sites while knowledge of the specific interactions involved remains limited. Without a comprehensive comparison of their performance, the reliability and accuracy of these tools remains unclear. Faced with a large number of different tools that address this problem, we summarized and categorized them based on search strategy and input data requirements. Twelve representative methods were chosen and applied to predict CRMs from the Drosophila CRM database REDfly, and across the human ENCODE regions. Our results show that the optimal choice of method varies depending on species and composition of the sequences in question. When discriminating CRMs from non-coding regions, those methods considering evolutionary conservation have a stronger predictive power than methods designed to be run on a single genome. Different CRM representations and search strategies rely on different CRM properties, and different methods can complement one another. For example, some favour homotypical clusters of binding sites, while others perform best on short CRMs. Furthermore, most methods appear to be sensitive to the composition and structure of the genome to which they are applied. We analyze the principal features that distinguish the methods that performed well, identify weaknesses leading to poor performance, and provide a guide for users. We also propose key considerations for the development and evaluation of future CRM-prediction methods

    Useful pharmacodynamic endpoints in children: selection, measurement, and next steps.

    Get PDF
    Pharmacodynamic (PD) endpoints are essential for establishing the benefit-to-risk ratio for therapeutic interventions in children and neonates. This article discusses the selection of an appropriate measure of response, the PD endpoint, which is a critical methodological step in designing pediatric efficacy and safety studies. We provide an overview of existing guidance on the choice of PD endpoints in pediatric clinical research. We identified several considerations relevant to the selection and measurement of PD endpoints in pediatric clinical trials, including the use of biomarkers, modeling, compliance, scoring systems, and validated measurement tools. To be useful, PD endpoints in children need to be clinically relevant, responsive to both treatment and/or disease progression, reproducible, and reliable. In most pediatric disease areas, this requires significant validation efforts. We propose a minimal set of criteria for useful PD endpoint selection and measurement. We conclude that, given the current heterogeneity of pediatric PD endpoint definitions and measurements, both across and within defined disease areas, there is an acute need for internationally agreed, validated, and condition-specific pediatric PD endpoints that consider the needs of all stakeholders, including healthcare providers, policy makers, patients, and families.Pediatric Research advance online publication, 11 April 2018; doi:10.1038/pr.2018.38
    corecore