2,128 research outputs found

    Editorial Materials: Special Issue on Advances in Luminescent Engineered Nanomaterials

    Get PDF
    Engineered nanomaterials are purposely manufactured particles with sizes typically between 1 and 100 nm, which can be either organic, inorganic, or organometallic in nature [...]</jats:p

    Validation of Spent Coffee Grounds as Precursors for the Development of Sustainable Carbon Dot-Based for Fe3+ Optical Sensing

    Get PDF
    Carbon dots (CDs) are fluorescence carbon-based nanomaterials that possess several properties such as photoluminescence, biocompatibility and good water solubility. They can be fabricated from a large variety of precursors; however, most available organic molecules are still expensive and their use or synthesis can lead to significant challenges to the environment and human health. It has become desirable to use biomass waste as alternative precursors in the synthesis of CDs, given that biomass waste material is ubiquitous, nontoxic, cheap and renewable. Spent coffee grounds (SCGs) are the residues of the treatment of coffee powder can be a potential carbon source to a more environmentally sustainable synthesis route. In this work, we fabricated SCG-based CDs via one-pot and solvent-free carbonization at 200 °C of solid samples generating particles with sizes between 2.1 and 3.9 nm. These carbon nanoparticles exhibited blue fluorescence and excitation-dependent emission of carbon dots with moderate quantum yields (2.95.8%). The presence of heavy metals in water resources, such as Fe3+, can lead to adverse health effects. SCG-based CDs showed potential for being used as optical Fe3+ optical sensors, with Life Cycle Assessment (LCA) studies validating the SCGs as more sustainable precursors than classical precursors, both considering a weight- or function-based functional unit.</jats:p

    Comparative life cycle assessment of high-yield synthesis routes for carbon dots

    Get PDF
    Carbon dots (CDs) are carbon-based nanomaterials with advantageous luminescent properties, making them promising alternatives to other molecular and nanosized fluorophores. However, the development of CDs is impaired by the low synthesis yield of standard fabrication strategies, making high-yield strategies essential. To help future studies to focus on cleaner production strategies, we have employed a Life Cycle Assessment (LCA) to compare and understand the environmental impacts of available routes for the high-yield synthesis of carbon dots. These routes were: (1) production of hydrochar, via hydrothermal treatment of carbon precursors, and its alkaline-peroxide treatment into high-yield carbon dots; (2) thermal treatment of carbon precursors mixed in a eutectic mixture of salts. Results show that the first synthesis route is associated with the lowest environmental impacts. This is attributed to the absence of the mixture of salts in the first synthesis route, which offsets its higher electricity consumption. Sensitivity analysis showed that the most critical parameter in the different synthetic strategies is the identity of the carbon precursor, with electricity being also relevant for the first synthesis route. Nevertheless, the use of some carbon precursors (as citric acid) with higher associated environmental impacts may be justified by their beneficial role in increasing the luminescent performance of carbon dots. Thus, the first synthesis route is indicated to be the most environmental benign and should be used as a basis in future studies aimed to the cleaner and high-yield production of carbon dots

    Revisiting the Absorption Spectra of Polycyclic Aromatic Hydrocarbons over Porto (Portugal) by TD-DFT Calculations

    Get PDF
    Brown carbon is a type of strong light-absorbing carbonaceous aerosol associated with radiative forcing. Nevertheless, the difficulty in correlating the chemical composition of brown carbon with its light absorption properties impairs the proper elucidation of its role in radiative forcing. Here, we have used a time-dependent density functional theory (TD-DFT)-based procedure to revisit the real-world absorption spectra of polycyclic aromatic hydrocarbons (PAHs) over the city of Porto, in Portugal, while correcting the spectra for their quantity in PM10 particulate matter. Our aim is to, by comparing these new results with those obtained previously regarding PM2.5 data, evaluate the role of different groupings of particulate matter in the light absorption of brown carbon. The results indicate that irrespective of the absorption spectra corresponding to their PM10 or PM2.5 data, the studied PAHs should contribute to radiative forcing by light absorption at UVA and (sub)visible wavelengths. However, the identity of the individual PAH species that contribute the most for the considered wavelengths can be quite different. Thus, different groupings of particulate matter appear to provide distinct contributions to light absorption and radiative forcing over the same location, even when considering the same class of molecular compounds.</jats:p

    Elucidating the chemiexcitation of dioxetanones by replacing the peroxide bond with S-S, N-N and C-C bonds

    Get PDF
    Dioxetanone is one of the prototypical cyclic peroxide intermediates in several chemiluminescent and bioluminescent systems, in which thermolysis reactions allow efficient singlet chemiexcitation. While the chemiexcitation mechanism of dioxetanone and peroxide intermediates is still far from understood, the presence of a peroxide bond that undergoes bond breaking has been found to be a constant. Here we have addressed the following questions: can other non-peroxide bonds lead to chemiexcitation and, if not, can the differences between dioxetanone and non-peroxide derivatives help to elucidate their chemiexcitation mechanism? To this end, we have used a reliable TD-DFT approach to model the thermolysis and chemiexcitation of a model dioxetanone and its three other non-peroxide derivatives. The results showed that only the dioxetanone molecule could lead to chemiluminescence as it is the only one for which thermolysis is energetically favorable and provides a pathway for singlet chemiexcitation. Finally, the chemiexcitation of the model dioxetanone is explained by its access, during thermolysis, to a biradical region where the ground and excited states are degenerate. This occurs due to an increased interaction between the reaction fragments, which extends the biradical regions and delays the rupture of the peroxide ring

    Combined Experimental and Theoretical Investigation into the Photophysical Properties of Halogenated Coelenteramide Analogs

    Get PDF
    Marine Coelenterazine is one of the most well-known chemi-/bioluminescent systems, and in which reaction the chemi-/bioluminophore (Coelenteramide) is generated and chemiexcited to singlet excited states (leading to light emission). Recent studies have shown that the bromination of compounds associated with the marine Coelenterazine system can provide them with new properties, such as anticancer activity and enhanced emission. Given this, our objective is to characterize the photophysical properties of a previously reported brominated Coelenteramide analog, by employing a combined experimental and theoretical approach. To better analyze the potential halogen effect, we have also synthesized and characterized, for the first time, two new fluorinated and chlorinated Coelenteramide analogs. These compounds show similar emission spectra in aqueous solution, but with different fluorescence quantum yields, in a trend that can be correlated with the heavy-atom effect (F > Cl > Br). A blue shift in emission in other solvents is also verified with the F-Cl-Br trend. More relevantly, the fluorescence quantum yield of the brominated analog is particularly sensitive to changes in solvent, which indicates that this compound has potential use as a microenvironment fluorescence probe. Theoretical calculations indicate that the observed excited state transitions result from local excitations involving the pyrazine ring. The obtained information should be useful for the further exploration of halogenated Coelenteramides and their luminescent properties

    Chemical Composition, Bioactive Compounds, and Antioxidant Activity of Two Wild Edible Mushrooms Armillaria mellea and Macrolepiota procera from Two Countries (Morocco and Portugal)

    Get PDF
    The present study aimed to investigate the chemical composition, bioactive compounds, and antioxidant activity of two wild edible mushrooms, the honey fungus (Armillaria mellea) and the parasol mushroom (Macrolepiota procera), collected from Northern Morocco (MA) and Portugal (PT). Those species were chosen due to their edibility, nutraceutical, and medicinal properties. Bioactive compounds (ascorbic acid, tannin, total phenolic, total flavonoid, beta-carotene, and lycopene) and their antioxidant activity were determined by spectrophotometric methods. Herein, the fruiting body of the samples revealed a significantly higher amount of bioactive compounds, and values varied between the Moroccan and the Portuguese ones. Methanolic extracts shown a strong antioxidant capacity: Using DPPH free radical-scavenging activity radicals (IC50 1.06-1.32 mg/mL); inhibition of beta-carotene bleaching radicals (IC50 0.09-0.53 mg/mL); and, reducing power radicals (IC50 0.52-1.11 mg/mL). The mushroom species with the highest antioxidant capacity was A. mellea from MA. Chemical composition was analyzed by GC-MS and LC-MS methodologies. GC-MS analysis showed that the most abundant biomolecules group was sugar compositions in the four samples (62.90%, 48.93%, 59.00%, and 53.71%) and the main components were galactitol 16.74%, petroselinic acid 19.83%, d-galactose 38.43%, and glycerol 24.43% in A. mellea (MA), A. mellea (PT), M. procera (MA), and M. procera (PT), respectively. LC-MS analysis of individual phenolic compounds revealed that vanillic acid (198.40 +/- 2.82 mu g/g dry weight (dw) and cinnamic acid (155.20 +/- 0.97 mu g/g dw) were the main compounds detected in A. mellea, while protocatechuic acid (92.52 +/- 0.45 and 125.50 +/- 0.89 mu g/g dw) was predominated in M. procera for MA and PT samples, respectively. In general, the results of this comparative study demonstrate that the geographic and climatic conditions of the collection site can influence biomolecule compounds and antioxidant properties of wild mushrooms. This study contributes to the elaboration of nutritional, nutraceutical, and pharmaceutical databases of the worldwide consumed mushrooms

    A trans10-18:1 enriched fraction from beef fed a barley grain-based diet induces lipogenic gene expression and reduces viability of HepG2 cells.

    Get PDF
    Beef fat is a natural source of trans (t) fatty acids, and is typically enriched with either t10-18:1 or t11-18:1. Little is known about the bioactivity of individual t-18:1 isomers, and the present study compared the effects of t9-18:1, cis (c)9-18:1 and trans (t)-18:1 fractions isolated from beef fat enriched with either t10-18:1 (HT10) or t11-18:1 (HT11). All 18:1 isomers resulted in reduced human liver (HepG2) cell viability relative to control. Both c9-18:1 and HT11were the least toxic, t9-18:1had dose response increased toxicity, and HT10 had the greatest toxicity (P&lt;0.05). Incorporation of t18:1 isomers was 1.8-2.5 fold greater in triacylglycerol (TG) than phospholipids (PL), whereas Δ9 desaturation products were selectively incorporated into PL. Culturing HepG2 cells with t9-18:1 and HT10 increased (P&lt;0.05) the Δ9 desaturation index (c9-16:1/16:0) compared to other fatty acid treatments. HT10 and t9-18:1 also increased expression of lipogenic genes (FAS, SCD1, HMGCR and SREBP2) compared to control (P&lt;0.05), whereas c9-18:1 and HT11 did not affect the expression of these genes. Our results suggest effects of HT11 and c9-18:1 were similar to BSA control, whereas HT10 and t-9 18:1 (i.e. the predominant trans fatty acid isomer found in partially hydrogenated vegetable oils) were more cytotoxic and led to greater expression of lipogenic genes

    Investigation of the Anticancer and Drug Combination Potential of Brominated Coelenteramines toward Breast and Prostate Cancer

    Get PDF
    Cancer is a very challenging disease to treat, both in terms of therapeutic efficiency and harmful side effects, which continues to motivate the pursuit for novel molecules with potential anticancer activity. Herein, we have designed, synthesized, and evaluated the cytotoxicity of different brominated coelenteramines, which are metabolic products and synthesis precursors of the chemi-/bioluminescent system of marine coelenterazine. The evaluation of the anticancer potential of these molecules was carried out for both prostate and breast cancer, while also exploring their potential for use in combination therapy. Our results provided further insight into the structure-activity relationship of this type of molecule, such as their high structural specificity, as well highlighting the 4-bromophenyl moiety as essential for the anticancer activity. The obtained data also indicated that, despite their similarity, the anticancer activity displayed by both brominated coelenteramines and coelenterazines should arise from independent mechanisms of action. Finally, one of the studied coelenteramines was able to improve the profile of a known chemotherapeutic agent, even at concentrations in which its anticancer activity was not relevant. Thus, our work showed the potential of different components of marine chemi-/bioluminescent systems as novel anticancer molecules, while providing useful information for future optimizations

    “Bone-shot fracture” – An unusual iliac wing fracture caused by a projectile of autologous bone fragment. A case report

    Get PDF
    Case: A young adult male sustained a high-energy crash suffering multiple injuries including a comminuted right femoral shaft fracture and an ipsilateral iliac wing fracture. The iliac fracture was caused by a femoral fragment which was projected and pierced the iliac wing. The patient underwent surgery with retrieval of the femoral fragment and fixation of the iliac and femoral fractures. The lesions healed uneventfully. Conclusion: This is the first reported case of an iliac fracture caused by a projectile of autologous bone. High-energy trauma may present unusual or never seen injury patterns to the trauma surgeon
    corecore