262 research outputs found

    Controlling Curie temperature in (Ga,Ms)As through location of the Fermi level within the impurity band

    Full text link
    The ferromagnetic semiconductor (Ga,Mn)As has emerged as the most studied material for prototype applications in semiconductor spintronics. Because ferromagnetism in (Ga,Mn)As is hole-mediated, the nature of the hole states has direct and crucial bearing on its Curie temperature TC. It is vigorously debated, however, whether holes in (Ga,Mn)As reside in the valence band or in an impurity band. In this paper we combine results of channeling experiments, which measure the concentrations both of Mn ions and of holes relevant to the ferromagnetic order, with magnetization, transport, and magneto-optical data to address this issue. Taken together, these measurements provide strong evidence that it is the location of the Fermi level within the impurity band that determines TC through determining the degree of hole localization. This finding differs drastically from the often accepted view that TC is controlled by valence band holes, thus opening new avenues for achieving higher values of TC.Comment: 5 figures, supplementary material include

    Genotyping faecal samples of Bengal tiger Panthera tigris tigris for population estimation: A pilot study

    Get PDF
    BACKGROUND: Bengal tiger Panthera tigris tigris the National Animal of India, is an endangered species. Estimating populations for such species is the main objective for designing conservation measures and for evaluating those that are already in place. Due to the tiger's cryptic and secretive behaviour, it is not possible to enumerate and monitor its populations through direct observations; instead indirect methods have always been used for studying tigers in the wild. DNA methods based on non-invasive sampling have not been attempted so far for tiger population studies in India. We describe here a pilot study using DNA extracted from faecal samples of tigers for the purpose of population estimation. RESULTS: In this study, PCR primers were developed based on tiger-specific variations in the mitochondrial cytochrome b for reliably identifying tiger faecal samples from those of sympatric carnivores. Microsatellite markers were developed for the identification of individual tigers with a sibling Probability of Identity of 0.005 that can distinguish even closely related individuals with 99.9% certainty. The effectiveness of using field-collected tiger faecal samples for DNA analysis was evaluated by sampling, identification and subsequently genotyping samples from two protected areas in southern India. CONCLUSION: Our results demonstrate the feasibility of using tiger faecal matter as a potential source of DNA for population estimation of tigers in protected areas in India in addition to the methods currently in use

    Aberrant over-expression of a forkhead family member, FOXO1A, in a brain tumor cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mammalian FOXO (forkhead box, O subclass) proteins are a family of pleiotropic transcription factors involved in the regulation of a broad range of cellular processes critical for survival. Despite the essential and diverse roles of the FOXO family members in human cells and their involvement in tumor pathogenesis, the regulation of <it>FOXO </it>expression remains poorly understood. We have addressed the mechanisms underlying the high level of expression of the <it>FOXO1A </it>gene in a cell line, PER-453, derived from a primitive neuroectodermal tumor of the central nervous system (CNS-PNET).</p> <p>Methods</p> <p>The status of the <it>FOXO1A </it>locus in the PER-453 CNS-PNET cell line was investigated by Southern blotting and DNA sequence analysis of the proximal promoter, 5'-UTR, open reading frame and 3'-UTR. FOXO1A expression was assessed by conventional and quantitative RT-PCR, Northern and Western blotting.</p> <p>Results</p> <p>Quantitative real-time RT-PCR (qRT-PCR) data indicated that after normalization to <it>ACTB </it>mRNA levels, canonical <it>FOXO1A </it>mRNA expression in the PER-453 cell line was 124-fold higher than the average level of five other CNS-PNET cell lines tested, 24-fold higher than the level in whole fetal brain, and 3.5-fold higher than the level in fetal brain germinal matrix cells. No mutations within the <it>FOXO1A </it>open reading frame or gross rearrangements of the <it>FOXO1A </it>locus were detected. However, a single nucleotide change within the proximal promoter and several nucleotide changes within the 3'-UTR were identified. In addition, two novel <it>FOXO1A </it>transcripts were isolated that differ from the canonical transcript by alternative splicing within the 3'-UTR.</p> <p>Conclusion</p> <p>The CNS-PNET cell line, PER-453, expresses <it>FOXO1A </it>at very high levels relative to most normal and cancer cells from a broad range of tissues. The <it>FOXO1A </it>open reading frame is wild type in the PER-453 cell line and the abnormally high <it>FOXO1A </it>mRNA expression is not due to mutations affecting the 5'-UTR or proximal promoter. Over expression of <it>FOXO1A </it>may be the result of PER-453 specific epimutations or imbalances in regulatory factors acting at the promoter and/or 3'-UTR.</p

    Selected MicroRNAs Define Cell Fate Determination of Murine Central Memory CD8 T Cells

    Get PDF
    During an immune response T cells enter memory fate determination, a program that divides them into two main populations: effector memory and central memory T cells. Since in many systems protection appears to be preferentially mediated by T cells of the central memory it is important to understand when and how fate determination takes place. To date, cell intrinsic molecular events that determine their differentiation remains unclear. MicroRNAs are a class of small, evolutionarily conserved RNA molecules that negatively regulate gene expression, causing translational repression and/or messenger RNA degradation. Here, using an in vitro system where activated CD8 T cells driven by IL-2 or IL-15 become either effector memory or central memory cells, we assessed the role of microRNAs in memory T cell fate determination. We found that fate determination to central memory T cells is under the balancing effects of a discrete number of microRNAs including miR-150, miR-155 and the let-7 family. Based on miR-150 a new target, KChIP.1 (K + channel interacting protein 1), was uncovered, which is specifically upregulated in developing central memory CD8 T cells. Our studies indicate that cell fate determination such as surface phenotype and self-renewal may be decided at the pre-effector stage on the basis of the balancing effects of a discrete number of microRNAs. These results may have implications for the development of T cell vaccines and T cell-based adoptive therapies

    The Antidiabetic Drug Ciglitazone Induces High Grade Bladder Cancer Cells Apoptosis through the Up-Regulation of TRAIL

    Get PDF
    International audienceBACKGROUND: Ciglitazone belongs to the thiazolidinediones class of antidiabetic drug family and is a high-affinity ligand for the Peroxisome Proliferator-Activated Receptor γ (PPARγ). Apart from its antidiabetic activity, this molecule shows antineoplastic effectiveness in numerous cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Using RT4 (derived from a well differentiated grade I papillary tumor) and T24 (derived from an undifferentiated grade III carcinoma) bladder cancer cells, we investigated the potential of ciglitazone to induce apoptotic cell death and characterized the molecular mechanisms involved. In RT4 cells, the drug induced G2/M cell cycle arrest characterized by an overexpression of p53, p21(waf1/CIP1) and p27(Kip1) in concomitance with a decrease of cyclin B1. On the contrary, in T24 cells, it triggered apoptosis via extrinsic and intrinsic pathways. Cell cycle arrest and induction of apoptosis occurred at high concentrations through PPARγ activation-independent pathways. We show that in vivo treatment of nude mice by ciglitazone inhibits high grade bladder cancer xenograft development. We identified a novel mechanism by which ciglitazone kills cancer cells. Ciglitazone up-regulated soluble and membrane-bound TRAIL and let TRAIL-resistant T24 cells to respond to TRAIL through caspase activation, death receptor signalling pathway and Bid cleavage. We provided evidence that TRAIL-induced apoptosis is partially driven by ciglitazone-mediated down-regulation of c-FLIP and survivin protein levels through a proteasome-dependent degradation mechanism. CONCLUSIONS/SIGNIFICANCE: Therefore, ciglitazone could be clinically relevant as chemopreventive or therapeutic agent for the treatment of TRAIL-refractory high grade urothelial cancers

    Prefrontal response and frontostriatal functional connectivity to monetary reward in abstinent alcohol-dependent young adults

    Get PDF
    Although altered function in neural reward circuitry is widely proposed in models of addiction, more recent conceptual views have emphasized the role of disrupted response in prefrontal regions. Changes in regions such as the orbitofrontal cortex, medial prefrontal cortex, and dorsolateral prefrontal cortex are postulated to contribute to the compulsivity, impulsivity, and altered executive function that are central to addiction. In addition, few studies have examined function in these regions during young adulthood, when exposure is less chronic than in typical samples of alcohol-dependent adults. To address these issues, we examined neural response and functional connectivity during monetary reward in 24 adults with alcohol dependence and 24 psychiatrically healthy adults. Adults with alcohol dependence exhibited less response to the receipt of monetary reward in a set of prefrontal regions including the medial prefrontal cortex, lateral orbitofrontal cortex, and dorsolateral prefrontal cortex. Adults with alcohol dependence also exhibited greater negative correlation between function in each of these regions and that in the nucleus accumbens. Within the alcohol-dependent group, those with family history of alcohol dependence exhibited lower mPFC response, and those with more frequent drinking exhibited greater negative functional connectivity between the mPFC and the nucleus accumbens. These findings indicate that alcohol dependence is associated with less engagement of prefrontal cortical regions, suggesting weak or disrupted regulation of ventral striatal response. This pattern of prefrontal response and frontostriatal connectivity has consequences for the behavior patterns typical of addiction. Furthermore, brain-behavior findings indicate that the potential mechanisms of disruption in frontostriatal circuitry in alcohol dependence include family liability to alcohol use problems and more frequent use of alcohol. In all, these findings build on the extant literature on reward-circuit function in addiction and suggest mechanisms for disrupted function in alcohol dependence. © 2014 Forbes et al
    • …
    corecore