22 research outputs found

    On the Temperature Dependence of the Shear Viscosity and Holography

    Get PDF
    We examine the structure of the shear viscosity to entropy density ratio eta/s in holographic theories of gravity coupled to a scalar field, in the presence of higher derivative corrections. Thanks to a non-trivial scalar field profile, eta/s in this setup generically runs as a function of temperature. In particular, its temperature behavior is dictated by the shape of the scalar potential and of the scalar couplings to the higher derivative terms. We consider a number of dilatonic setups, but focus mostly on phenomenological models that are QCD-like. We determine the geometric conditions needed to identify local and global minima for eta/s as a function of temperature, which translate to restrictions on the signs and ranges of the higher derivative couplings. Finally, such restrictions lead to an holographic argument for the existence of a global minimum for eta/s in these models, at or above the deconfinement transition.Comment: references adde

    Liquid-gas phase transition in nuclear multifragmentation

    Get PDF
    The equation of state of nuclear matter suggests that at suitable beam energies the disassembling hot system formed in heavy ion collisions will pass through a liquid-gas coexistence region. Searching for the signatures of the phase transition has been a very important focal point of experimental endeavours in heavy ion collisions, in the last fifteen years. Simultaneously theoretical models have been developed to provide information about the equation of state and reaction mechanisms consistent with the experimental observables. This article is a review of this endeavour.Comment: 63 pages, 27 figures, submitted to Adv. Nucl. Phys. Some typos corrected, minor text change

    On the Strength of First Order Phase Transitions

    Full text link
    Electroweak baryogenesis may solve one of the most fundamental questions we can ask about the universe, that of the origin of matter. It has become clear in the past few years that it also poses a multi-faceted challenge. In order to compute the tiny primordial baryonic excess, we probably must invoke physics beyond the standard model (an exciting prospect for most people), we must push perturbation theory to its ``limits'' (or beyond), and we must deal with nonequilibrium aspects of the phase transition. In this talk, I focus mainly on the latter issue, that of nonequilibrium aspects of first order transitions. In particular, I discuss the elusive question of ``weakness''. What does it mean to have a weak first order transition, and how can we distinguish between weak and strong? I argue that weak and strong transitions have very different dynamics; while strong transitions proceed by the usual bubble nucleation mechanism, weak transitions are characterized by a mixing of phases as the system reaches the critical temperature from above. I show that it is possible to clearly distinguish between the two, and discuss consequences for studies of first order transitions in general. (Invited talk given at the ``Electroweak Physics and the Early Universe'' workshop, Sintra, March 23-25, 1994.)Comment: 16 pages, 4 figures not included (can be obtained from hep-ph/9403310, or by request) RevTeX, DART-HEP-94/0
    corecore