1,857 research outputs found
Color Magnitude Relation and Morphology of Low-Redshift ULIRGs in SDSS
We present color-magnitude and morphological analysis of 54 low-redshift
ULIRGs, a subset of the IRAS 1Jy sample (Kim & Sanders, 1998), in the SDSS. The
ULIRGs are on average 1 magnitude brighter in M0.1r than the SDSS galaxies
within the same redshift range. The majority of the ULIRGs (~87%) have the
colors typical of the blue cloud, and only 4 sources (~7%) are located in the
red sequence. While ULIRGs are popularly thought to be precursors to a QSO
phase, we find few (~6%) in the "green valley" where the majority of the X-ray
and IR selected AGNs are found, and none of which harbors an AGN. For the 14
previously spectroscopic identified AGNs (~28%), we perform PSF subtractions
and find that on average the central point sources contribute less than one
third to the total luminosity, and that their high optical luminosities and
overall blue colors are apparently the result of star formation activity of the
host galaxies. Visual inspection of the SDSS images reveals a wide range of
disturbed morphologies. A detailed morphology analysis using Gini and M20
coefficients shows that slightly less than one half (~42% in g band) of the
ULIRGs are located in the region where most local mergers are found. The
heterogeneous distribution of ULIRGs in the G-M20 space is qualitatively
consistent with the results found by numerical simulations of disk-disk
mergers. Our study also shows that the measured morphological parameters are
systematically affected by the SNR and thus the merging galaxies can appear at
various regions in the G-M20 space. In general, our results reinforce the view
that ULIRGs contain young stellar populations and are mergers in progress. Our
study provides a uniform comparison sample for studying ULIRGs at higher
redshifts such as Spitzer mid-IR selected ULIRGs at z=1~2 and submm galaxies.Comment: 42 pages, 11 figures, ApJ accepte
Government Spending and Welfare Employment
One of the persistent issues which welfare policy makers and analysts confront in western industrial nations, particularly in the United States, is the appropriate relationship between public assistance payments and employment. There is a great deal of debate over whether welfare recipients should work or be required to take jobs and whether the government should emphasize training or placement services or create jobs directly. Relatively little concern and attention have been given to the \u27roblem of the number of jobs that are actually available in the private sector for recipients who want to work. Although the federal government will plan its spending levels with an eye to the impacts on the employment situation in the country, there has been little effort to examine how various types of spending affect the employment prospects of specific population groups. This paper makes an initial attempt to analyze the differential employment impacts of various kinds of federal spending as they affect the population on welfare. Based on research on the employment characteristics of recipients population and the application of an input-output model developed by the Department of Labor, estimates of increased welfare employment are derived for increases in particular types of federal spending
Parametric tests of a traction drive retrofitted to an automotive gas turbine
The results of a test program to retrofit a high performance fixed ratio Nasvytis Multiroller Traction Drive in place of a helical gear set to a gas turbine engine are presented. Parametric tests up to a maximum engine power turbine speed of 45,500 rpm and to a power level of 11 kW were conducted. Comparisons were made to similar drives that were parametrically tested on a back-to-back test stand. The drive showed good compatibility with the gas turbine engine. Specific fuel consumption of the engine with the traction drive speed reducer installed was comparable to the original helical gearset equipped engine
Switched Control of Electron Nuclear Spin Systems
In this article, we study control of electron-nuclear spin dynamics at
magnetic field strengths where the Larmor frequency of the nucleus is
comparable to the hyperfine coupling strength. The quantization axis for the
nuclear spin differs from the static B_0 field direction and depends on the
state of the electron spin. The quantization axis can be switched by flipping
the state of electron spin, allowing for universal control on nuclear spin
states. We show that by performing a sequence of flips (each followed by a
suitable delay), we can perform any desired rotation on the nuclear spins,
which can also be conditioned on the state of the electron spin. These
operations, combined with electron spin rotations can be used to synthesize any
unitary transformation on the coupled electron-nuclear spin system. We discuss
how these methods can be used for design of experiments for transfer of
polarization from the electron to the nuclear spins
The Panchromatic Starburst Intensity Limit At Low And High Redshift
The integrated bolometric effective surface brightness S_e distributions of
starbursts are investigated for samples observed in 1. the rest frame
ultraviolet (UV), 2. the far-infrared and H-alpha, and 3. 21cm radio continuum
emission. For the UV sample we exploit a tight empirical relationship between
UV reddening and extinction to recover the bolometric flux. Parameterizing the
S_e upper limit by the 90th percentile of the distribution, we find a mean
S_{e,90} = 2.0e11 L_{sun}/kpc^2 for the three samples, with a factor of three
difference between the samples. This is consistent with what is expected from
the calibration uncertainties alone. We find little variation in S_{e,90} with
effective radii for R_e ~ 0.1 - 10 kpc, and little evolution out to redshifts z
~ 3. The lack of a strong dependence of S_{e,90} on wavelength, and its
consistency with the pressure measured in strong galactic winds, argue that it
corresponds to a global star formation intensity limit (\dot\Sigma_{e,90} ~ 45
M_{sun}/kpc^2/yr) rather than being an opacity effect. There are several
important implications of these results: 1. There is a robust physical
mechanism limiting starburst intensity. We note that starbursts have S_e
consistent with the expectations of gravitational instability models applied to
the solid body rotation portion of galaxies. 2. Elliptical galaxies and spiral
bulges can plausibly be built with maximum intensity bursts, while normal
spiral disks can not. 3. The UV extinction of high-z galaxies is significant,
implying that star formation in the early universe is moderately obscured.
After correcting for extinction, the observed metal production rate at z ~ 3
agrees well with independent estimates made for the epoch of elliptical galaxy
formation.Comment: 31 pages Latex (aas2pp4.sty,psfig.sty), 9 figures, accepted for
publication in the Astronomical Journa
Galaxies at Z = 3 Around Damped Ly-α Clouds
We are exploring the connection between Damped Ly-α Absorption systems and Lyman Break Galaxies using deep m (5σ)=26 m - broad band imaging (UBVI) of four wide fields (0.25deg each) obtained at the Kitt Peak 4-m telescope with MOSAIC. Each field contains a DLA at z ∼ 3. We want to address the nature of DLA at high-redshifts: (1) Are the DLAs embedded in much larger systems of galaxies? (2) How does the spatial distribution of emitters in 3D (space and redshift) correlate with the absorber? Contrary to most previous DLA studies, we are not looking for the absorber, and we do not rely on control fields because each of our fields is 40 × 40h Mpc (co-moving). We present preliminary results in two of our fields. In one case, it indicates an overdensity of galaxies on a scale of 5 Mpc. We discuss the possible implications and sources of contamination of our results. lim,I AB 2 -
The Star Formation Rate-Density Relationship at Redshift 3
We study the star formation rate (SFR) as a function of environment for UV-selected Lyman break galaxies (LBGs) at redshift 3. From deep [μ (sky) ≃ 27.6] UBVI MOSAIC images, covering a total of 0.90 deg , we select 334 LBGs in slices 100 h Mpc (comoving) deep spanning the redshift range 2.9 \u3c z \u3c 3.4 based on Bayesian photometric redshifts that include the I magnitude as a prior. The slice width (100 h Mpc) corresponds to the photometric redshift accuracy (Δ ∼ 0.15). We used mock catalogs from the GIF2 cosmological simulations to show that this redshift resolution is sufficient to statistically differentiate the high-density regions from the low-density regions using ∑ , the projected density to the fifth nearest neighbor. These mock catalogs have a redshift depth of 110 h Mpc, similar to our slice width. The large area of the MOSAIC images, ∼40 × 40 Mpc (comoving) per field, allows us to measure the SFR from the dust-corrected UV continuum as a function of ∑ . In contrast to low-redshift galaxies, we find that the SFR (or UV luminosity) of LBGs at z = 3 shows no detectable dependence on environment over 2 orders of magnitude in densities. To test the significance of our result, we use Monte Carlo simulations (from the mock catalogs) and the same projected density estimators that we applied to our data. We find that we can reject the steep z = 0 SFR-density relation at the 5 σ level. We conclude that the SFR-density relation at z = 3 must be at least 3.6 times flatter than it is locally; i.e., the SFR of LBGs is significantly less dependent on environment than the SFR of local star-forming galaxies. We find that the rest-frame UV colors are also independent of environment
H-alpha Imaging with HST+NICMOS of An Elusive Damped Ly-alpha Cloud at z=0.6
Despite previous intensive ground-based imaging and spectroscopic campaigns
and wide-band HST imaging of the z=0.927 QSO 3C336 field, the galaxy that hosts
the damped Ly-alpha system along this line-of-sight has eluded detection. We
present a deep narrow-band H-alpha image of the field of this z=0.656 damped
Ly-alpha absorber, obtained through the F108N filter of NICMOS 1 onboard the
Hubble Space Telescope. The goal of this project was to detect any H-alpha
emission 10 times closer than previous studies to unveil the damped absorber.
We do not detect H-alpha emission between 0.05'' and 6'' (0.24 and 30
kpc) from the QSO, with a 3-sigma flux limit of
erg/s/cm^2 for an unresolved source, corresponding to a star formation rate
(SFR) of M_sun/yr. This leads to a 3-sigma upper limit of 0.15
M_sun/yr/kpc^2 on the SFR density, or a maximum SFR of 1.87 M_sun/yr assuming a
disk of 4 kpc in diameter. This result adds to the number of low redshift
damped Ly-alpha absorbers that are not associated with the central regions of
Milky-Way-like disks. Damped Ly-alpha absorption can arise from high density
concentrations in a variety of galactic environments including some that,
despite their high local HI densities, are not conducive to widespread star
formation.Comment: 18 pages, 3 figures. Replaced to match published version in ApJ, 550,
585 (Apr 1 2001
Neutral Gas Properties and Ly Escape in Extreme Green Pea Galaxies
Mechanisms regulating the escape of Ly photons and ionizing radiation
remain poorly understood. To study these processes we analyze VLA 21cm
observations of one Green Pea (GP), J160810+352809 (hereafter J1608), and HST
COS spectra of 17 GP galaxies at . All are highly ionized: J1608 has the
highest [O III] /[O II] for star-forming galaxies in
SDSS, and the 17 GPs have [O III]/[O II] . We set an upper limit on
J1608's HI mass of , near or below average compared to
similar mass dwarf galaxies. In the COS sample, eight GPs show Ly
absorption components, six of which also have Ly emission. The HI
column densities derived from Ly absorption are high, cm, well above the LyC optically thick limit. Using
low-ionization absorption lines, we measure covering fractions
(f_{\mbox{cov}}) of , and find that f_{\mbox{cov}} strongly
anti-correlates with Ly escape fraction. Low covering fractions may
facilitate Ly and LyC escape through dense neutral regions. GPs with
f_{\mbox{cov}}\sim1 all have low neutral gas velocities, while GPs with lower
f_{\mbox{cov}}=0.2-0.6 have a larger range of velocities. Conventional
mechanical feedback may help establish low f_{\mbox{cov}} in some cases,
whereas other processes may be important for GPs with low velocities. Finally,
we compare f_{\mbox{cov}} with proposed indicators of LyC escape. Ionizing
photon escape likely depends on a combination of neutral gas geometry and
kinematics, complicating the use of emission-line diagnostics for identifying
LyC emitters.Comment: 21 pages, 11 figures, accepted for publication in Ap
- …