776 research outputs found

    High rate production of polarized 3He with meta-stability exchange method

    Full text link
    Keywords: polarized 3He, meta-stability exchange, infrared laserComment: 4 figures, submitted to J. Phys. Soc. Jpn

    A \u201cnoisy\u201d electrical stimulation protocol favors muscle regeneration in vitro through release of endogenous ATP

    Get PDF
    An in vitro system of electrical stimulation was used to explore whether an innovative \u201cnoisy\u201d stimulation protocol derived from human electromyographic recordings (EMGstim)could promote muscle regeneration. EMGstim was delivered to cultured mouse myofibers isolated from Flexor Digitorum Brevis, preserving their satellite cells. In response to EMGstim, immunostaining for the myogenic regulatory factor myogenin, revealed an increased percentage of elongated myogenin-positive cells surrounding the myofibers. Conditioned medium collected from EMGstim-treated cell cultures, promoted satellite cells differentiation in unstimulated myofiber cell cultures, suggesting that extracellular soluble factors could mediate the process. Interestingly, the myogenic effect of EMGstim was mimicked by exogenously applied ATP (0.1 \u3bcM), reduced by the ATP diphosphohydrolase apyrase and prevented by blocking endogenous ATP release with carbenoxolone. In conclusion, our results show that \u201cnoisy\u201d electrical stimulations favor muscle progenitor cell differentiation most likely via the release of endogenous ATP from contracting myofibres. Our data also suggest that \u201cnoisy\u201d stimulation protocols could be potentially more efficient than regular stimulations to promote in vivo muscle regeneration after traumatic injury or in neuropathological diseases

    Microglia in prion diseases: Angels or demons?

    Get PDF
    Prion diseases are rare transmissible neurodegenerative disorders caused by the accumulation of a misfolded isoform (PrPSc) of the cellular prion protein (PrPC) in the central nervous system (CNS). Neuropathological hallmarks of prion diseases are neuronal loss, astrogliosis, and enhanced microglial proliferation and activation. As immune cells of the CNS, microglia participate both in the maintenance of the normal brain physiology and in driving the neuroinflammatory response to acute or chronic (e.g., neurodegenerative disorders) insults. Microglia involvement in prion diseases, however, is far from being clearly understood. During this review, we summarize and discuss controversial findings, both in patient and animal models, suggesting a neuroprotective role of microglia in prion disease pathogenesis and progression, or\u2014conversely\u2014a microglia-mediated exacerbation of neurotoxicity in later stages of disease. We also will consider the active participation of PrPC in microglial functions, by discussing previous reports, but also by presenting unpublished results that support a role for PrPC in cytokine secretion by activated primary microglia

    Asbestos Fibers Enhance the TMEM16A Channel Activity in Xenopus Oocytes

    Get PDF
    Background: The interaction of asbestos fibers with target cell membranes is still poorly investigated. Here, we detected and characterized an enhancement of chloride conductance in Xenopus oocyte cell membranes induced by exposure to crocidolite (Croc) asbestos fibers. Methods: A two-microelectrode voltage clamp technique was used to test the effect of Croc fiber suspensions on outward chloride currents evoked by step membrane depolarization. Calcium imaging experiments were also performed to investigate the variation of 'resting' oocyte [Ca2+]i following asbestos exposure. Results: The increase in chloride current after asbestos treatment, was sensitive to [Ca2+]e, and to specific blockers of TMEM16A Ca2+-activated chloride channels, MONNA and Ani9. Furthermore, asbestos treatment elevated the 'resting' [Ca2+]i likelihood by increasing the cell membrane permeability to Ca2 in favor of a tonic activation of TMEME16A channels. Western blot analysis confirmed that TMEME16A protein was endogenously present in the oocyte cell membrane and absorbed by Croc. Conclusion: the TMEM16A channels endogenously expressed by Xenopus oocytes are targets for asbestos fibers and represent a powerful tool for asbestos-membrane interaction studies. Interestingly, TMEM16A channels are highly expressed in many types of tumors, including some asbestos-related cancers, suggesting them, for the first time, as a possible early target of crocidolite-mediated tumorigenic effects on target cell membranes

    Myoblast adhesion, proliferation and differentiation on Human Elastin-Like Polypeptide (HELP) hydrogels

    Get PDF
    Purpose: The biochemical, mechanical and topographic properties of extracellular matrix are crucially involved in determining skeletal muscle cells morphogenesis, proliferation and differentiation. Human elastin-like polypeptides (HELPs) are recombinant biomimetic proteins designed to mimicking some properties of the native matrix protein; when employed as myoblasts adhesion substrates they stimulate in vitro myogenesis. Given the consequences that biophysical properties of extracellular matrix exert on skeletal muscle cells, the aim of this work was to investigate the effects of HELP hydrogels on myoblasts viability and functions. Methods: We recently synthesized a novel polypeptide, HELPc, by fusing the elastin-like backbone to a 41aa stretch present in the α2 chain of type IV collagen, containing two RGD motifs. To obtain hydrogels, the enzymatic cross-linking of the HELPc was accomplished by transglutaminase. Here, we employed both non cross-linked HELPc glass coatings and cross-linked HELPc hydrogels at different monomer density as adhesion substrates for C2C12 cells, used as myoblasts model. Results: By comparing cell adhesion, proliferation and differentiation, we revealed several striking differences. Depending on support rigidity, adhesion to HELPc substrates dictates cell morphology, spreading, focal adhesions formation and cytoskeletal organization. Hydrogels greatly stimulated cell proliferation, particularly in low serum-medium, and partially inhibited myogenic differentiation. Conclusions: In the whole, the results underline the potentiality of these genetically engineered polypeptides as a tool for dissecting crucial steps in myogenesis

    Neuronal Agrin Promotes Proliferation of Primary Human Myoblasts in an Age-Dependent Manner

    Get PDF
    Neuronal agrin, a heparan sulphate proteoglycan secreted by the -motor neurons, promotes the formation and maintenance of the neuromuscular junction by binding to Lrp4 and activating muscle-specific kinase (MuSK). Neuronal agrin also promotes myogenesis by enhancing differentiation and maturation of myotubes, but its effect on proliferating human myoblasts, which are often considered to be unresponsive to agrin, remains unclear. Using primary human myoblasts, we determined that neuronal agrin induced transient dephosphorylation of ERK1/2, while c-Abl, STAT3, and focal adhesion kinase were unresponsive. Gene silencing of Lrp4 and MuSK markedly reduced the BrdU incorporation, suggesting the functional importance of the Lrp4/MuSK complex for myoblast proliferation. Acute and chronic treatments with neuronal agrin increased the proliferation of human myoblasts in old donors, but they did not affect the proliferation of myoblasts in young donors. The C-terminal fragment of agrin which lacks the Lrp4-binding site and cannot activate MuSK had a similar age-dependent effect, indicating that the age-dependent signalling pathways activated by neuronal agrin involve the Lrp4/MuSK receptor complex as well as an Lrp4/MuSK-independent pathway which remained unknown. Collectively, our results highlight an age-dependent role for neuronal agrin in promoting the proliferation of human myoblasts

    Small footprint optoelectrodes using ring resonators for passive light localization

    Get PDF
    The combination of electrophysiology and optogenetics enables the exploration of how the brain operates down to a single neuron and its network activity. Neural probes are in vivo invasive devices that integrate sensors and stimulation sites to record and manipulate neuronal activity with high spatiotemporal resolution. State-of-the-art probes are limited by tradeoffs involving their lateral dimension, number of sensors, and ability to access independent stimulation sites. Here, we realize a highly scalable probe that features three-dimensional integration of small-footprint arrays of sensors and nanophotonic circuits to scale the density of sensors per cross-section by one order of magnitude with respect to state-of-the-art devices. For the first time, we overcome the spatial limit of the nanophotonic circuit by coupling only one waveguide to numerous optical ring resonators as passive nanophotonic switches. With this strategy, we achieve accurate on-demand light localization while avoiding spatially demanding bundles of waveguides and demonstrate the feasibility with a proof-of-concept device and its scalability towards high-resolution and low-damage neural optoelectrodes

    Identification of genes down-regulated during lung cancer progression: A cDNA array study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung cancer remains a major health challenge in the world. Survival for patients with stage I disease ranges between 40–70%. This suggests that a significant proportion of patients with stage I NSCLC may actually be under-staged.</p> <p>Methods</p> <p>In order to identify genes relevant for lung cancer development, we carried out cDNA array experiments employing 64 consecutive patients (58 men and 6 women) with a median age of 58 years and stage 1 or stage 2 non-small-cell lung cancer (NSCLC).</p> <p>Results</p> <p>Basic cDNA array data identified 14 genes as differentially regulated in the two groups. Quantitative RT-PCR analysis confirmed an effective different transcriptional regulation of 8 out of 14 genes analyzed. The products of these genes belong to different functional protein types, such as extra-cellular matrix proteins and proteases (<it>Decorin </it>and <it>MMP11</it>), genes involved in DNA repair (<it>XRCC1</it>), regulator of angiogenesis (<it>VEGF</it>), cell cycle regulators (<it>Cyclin D1</it>) and tumor-suppressor genes (<it>Semaphorin 3B</it>, <it>WNT-5A </it>and retinoblastoma-related <it>Rb2/p130</it>). Some previously described differences in expression patterns were confirmed by our array data. In addition, we identified and validated for the first time the reduced expression level of some genes during lung cancer progression.</p> <p>Conclusion</p> <p>Comparative hybridization by means of cDNA arrays assisted in identifying a series of novel progression-associated changes in gene expression, confirming, at the same time, a number of previously described results.</p
    • …
    corecore