2,389 research outputs found

    Effect of graphene substrate on the SERS Spectra of Aromatic bifunctional molecules on metal nanoparticles

    Get PDF
    The design of molecular sensors plays a very important role within nanotechnology and especially in the development of different devices for biomedical applications. Biosensors can be classified according to various criteria such as the type of interaction established between the recognition element and the analyte or the type of signal detection from the analyte (transduction). When Raman spectroscopy is used as an optical transduction technique the variations in the Raman signal due to the physical or chemical interaction between the analyte and the recognition element has to be detected. Therefore any significant improvement in the amplification of the optical sensor signal represents a breakthrough in the design of molecular sensors. In this sense, Surface-Enhanced Raman Spectroscopy (SERS) involves an enormous enhancement of the Raman signal from a molecule in the vicinity of a metal surface. The main objective of this work is to evaluate the effect of a monolayer of graphene oxide (GO) on the distribution of metal nanoparticles (NPs) and on the global SERS enhancement of paminothiophenol (pATP) and 4-mercaptobenzoic acid (4MBA) adsorbed on this substrate. These aromatic bifunctional molecules are able to interact to metal NPs and also they offer the possibility to link with biomolecules. Additionally by decorating Au or Ag NPs on graphene sheets, a coupled EM effect caused by the aggregation of the NPs and strong electronic interactions between Au or Ag NPs and the graphene sheets are considered to be responsible for the significantly enhanced Raman signal of the analytes [1-2]. Since there are increasing needs for methods to conduct reproducible and sensitive Raman measurements, Grapheneenhanced Raman Scattering (GERS) is emerging as an important method [3].Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Reducing computational time via order reduction of a class of reaction–diffusion systems

    Get PDF
    In this paper, we consider a class of reaction– diffusion PDEs. For this class, a suitable state transformation allows conversion to a heat equation together with a lower order PDE set. By giving an explicit solution to the heat equation we are able to obtain a complete solution to the original PDE. By focusing on the computational load, we give a comparison of the pure numerical, analytical/numerical, analytical/approximated, and approximated methods of solving the PDE. In some examples, we note an almost order of magnitude improvement in computational load

    Atherosclerotic carotid plaque composition: a 3T and 7T MRI-histology correlation study

    Get PDF
    Background and Purpose Carotid artery atherosclerotic plaque composition may influence plaque stability and risk of thromboembolic events, and non-invasive plaque imaging may therefore permit risk stratification for clinical management. Plaque composition was compared using non-invasive in-vivo (3T) and ex-vivo (7T) MRI and histopathological examination. Methods Thirty three endarterectomy cross sections, from 13 patients, were studied. The datasets consisted of in-vivo 3T MRI, ex-vivo 7T MRI and histopathology. Semi-automated segmentation methods were used to measure areas of different plaque components. Bland- Altman plots and mean difference with 95% confidence interval were carried out. Results There was general quantitative agreement between areas derived from semi-automated segmentation of MRI data and histology measurements. The mean differences and 95% confidence bounds in the relative to total plaque area between 3T versus Histology were: fibrous tissue 4.99 % (-4.56 to 14.56), lipid-rich/necrotic core (LR/NC) with haemorrhage - 1.81% (-14.11 to 10.48), LR/NC without haemorrhage -2.43% (-13.04 to 8.17), and calcification -3.18% (-11.55 to 5.18). The mean differences and 95% confidence bounds in the relative to total plaque area between 7T and histology were: fibrous tissue 3.17 % (-3.17 to 9.52), LR/NC with haemorrhage -0.55% (-9.06 to 7.95), LR/NC without haemorrhage - 12.62% (-19.8 to -5.45), and calcification -2.43% (-9.97 to 4.73). Conclusions This study provides evidence that semi-automated segmentation of 3T/7T MRI techniques can help to determine atherosclerotic plaque composition. In particular, the high resolution of ex-vivo 7T data was able to highlight greater detail in the atherosclerotic plaque composition. High field MRI may therefore have advantages for in vivo carotid plaque MR imaging

    Intra- and interspecies interactions between prion proteins and effects of mutations and polymorphisms

    Get PDF
    Recently, crystallization of the prion protein in a dimeric form was reported. Here we show that native soluble homogenous FLAG-tagged prion proteins from hamster, man and cattle expressed in the baculovirus system are predominantly dimeric. The PrP/PrP interaction was confirmed in Semliki Forest virus-RNA transfected BHK cells co-expressing FLAG- and oligohistidine-tagged human PrP. The yeast two-hybrid system identified the octarepeat region and the C-terminal structured domain (aa90-aa230) of PrP as PrP/PrP interaction domains. Additional octarepeats identified in patients suffering from fCJD reduced (wtPrP versus PrP+90R) and completely abolished (PrP+90R versus PrP+90R) the PrP/PrP interaction in the yeast two-hybrid system. In contrast, the Met/Val polymorphism (aa129), the GSS mutation Pro102Leu and the FFI mutation Asp178Asn did not affect PrP/PrP interactions. Proof of interactions between human or sheep and bovine PrP, and sheep and human PrP, as well as lack of interactions between human or bovine PrP and hamster PrP suggest that interspecies PrP interaction studies in the yeast two-hybrid system may serve as a rapid pre-assay to investigate species barriers in prion diseases

    Entropy spectrum of a Kerr anti-de Sitter black hole

    Full text link
    The entropy spectrum of a spherically symmetric black hole was derived without the quasinormal modes in the work of Majhi and Vagenas. Extending this work to rotating black holes, we quantize the entropy and the horizon area of a Kerr anti-de Sitter black hole by two methods. The spectra of entropy and area are obtained via the Bohr-Sommerfeld quantization rule and the adiabatic invariance in the first way. By addressing the wave function of emitted (absorbed) particles, the entropy and the area are quantized in the second one. Both results show that the entropy and the area spectra are equally spaced.Comment: Accepted for publication in The European Physical Journal C, Volume 72, Issue

    Aspects of Open-Closed Duality in a Background B-Field

    Full text link
    We study closed string exchanges in background BB-field. By analysing the two point one loop amplitude in bosonic string theory, we show that tree-level exchange of lowest lying, tachyonic and massless closed string modes, have IR singularities similar to those of the nonplanar sector in noncommutative gauge theories. We further isolate the contributions from each of the massless modes. We interpret these results as the manifestation of open/closed string duality, where the IR behaviour of the boundary noncommutative gauge theory is reconstructed from the bulk theory of closed strings.Comment: 33 pages, 4 figures, v2:references added, v3: minor changes, typos corrected, references adde

    Aspects of Open-Closed Duality in a Background B-Field II

    Full text link
    It was shown in [hep-th/0503009], in the context of bosonic theory that the IR singular terms that arise as a result of integrating out high momentum modes in nonplanar diagrams of noncommutative gauge theory can be recovered from low lying tree-level closed string exchanges. This follows as a natural consequence of world-sheet open-closed string duality. Here using the same setup we study the phenomenon for noncommutative N=2{\cal N}=2 gauge theory realised on a D3D_3 fractional brane localised at the fixed point of C2/Z2C^2/Z_2. The IR singularities from the massless closed string exchanges are exactly equal to those coming from one-loop gauge theory. This is as a result of cancellation of all contributions from the massive modes.Comment: 27 pages, 1 figure, references added, typos correcte

    Expanding Universe: Thermodynamical Aspects From Different Models

    Full text link
    The pivotal point of the paper is to discuss the behavior of temperature, pressure, energy density as a function of volume along with determination of caloric EoS from following two model: w(z)=w0+w1ln(1+z)w(z)=w_{0}+w_{1}\ln(1+z) & w(z)=1+(1+z)3A1+2A2(1+z)A0+2A1(1+z)+A2(1+z)2 w(z)=-1+\frac{(1+z)}{3}\frac{A_{1}+2A_{2}(1+z)}{A_{0}+2A_{1}(1+z)+A_{2}(1+z)^{2}}. The time scale of instability for this two models is discussed. In the paper we then generalize our result and arrive at general expression for energy density irrespective of the model. The thermodynamical stability for both of the model and the general case is discussed from this viewpoint. We also arrive at a condition on the limiting behavior of thermodynamic parameter to validate the third law of thermodynamics and interpret the general mathematical expression of integration constant U0U_{0} (what we get while integrating energy conservation equation) physically relating it to number of micro states. The constraint on the allowed values of the parameters of the models is discussed which ascertains stability of universe. The validity of thermodynamical laws within apparent and event horizon is discussed.Comment: 16 pages, 3 figures(Accepted for publication in "Astrophysics and Space Science"

    Duality cascades and duality walls

    Full text link
    We recast the phenomenon of duality cascades in terms of the Cartan matrix associated to the quiver gauge theories appearing in the cascade. In this language, Seiberg dualities for the different gauge factors correspond to Weyl reflections. We argue that the UV behavior of different duality cascades depends markedly on whether the Cartan matrix is affine ADE or not. In particular, we find examples of duality cascades that can't be continued after a finite energy scale, reaching a "duality wall", in terminology due to M. Strassler. For these duality cascades, we suggest the existence of a UV completion in terms of a little string theory.Comment: harvmac, 24 pages, 4 figures. v2: references added. v3: reference adde

    Non linear equation of state and effective phantom divide in brane models

    Full text link
    Here, DGP model of brane-gravity is analyzed and compared with the standard general relativity and Randall-Sundrum cases using non-linear equation of state. Phantom fluid is known to violate the weak energy condition. In this paper, it is found that this characteristic of phantom energy is affected drastically by the negative brane-tension λ\lambda of the RS-II model. It is found that in DGP model strong energy condition(SEC) is always violated and the universe accelerates only where as in RS-II model even SEC is not violated for 1<ρ/λ<21 < \rho/\lambda < 2 and the universe decelerates
    corecore