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Reducing computational time via order reduction
of a class of reaction–diffusion systems

F. López-Caamal, M. R. Garcı́a*, R. H. Middleton

Abstract— In this paper, we consider a class of reaction–
diffusion PDEs. For this class, a suitable state transformation
allows conversion to a heat equation together with a lower
order PDE set. By giving an explicit solution to the heat
equation we are able to obtain a complete solution to the
original PDE. By focusing on the computational load, we
give a comparison of the pure numerical, analytical/numerical,
analytical/approximated, and approximated methods of solving
the PDE. In some examples, we note an almost order of
magnitude improvement in computational load.

I. INTRODUCTION

Partial Differential Equations (PDEs) appear as a natural
way to describe a plethora of systems given the behaviour
that only these equations can reproduce. Their application
spectrum, in a biological context, is as rich as their dynamical
behaviour, ranging from population dynamics to metabolic
pathways [1]–[3].

In general, the numerical solution of these PDEs in-
volves the integration of a large set of ordinary differen-
tial equations (ODEs). Moreover, the approaches based on
spatial discretization, such as Finite Element Method, are
usually computationally involved and present a number of
disadvantages as some essential control theoretic properties
such as controllability or observability may be lost by the
discretization scheme or the degree of refinement [4].

Due to these disadvantages, new methods based on spec-
tral decomposition techniques, have emerged. This approach
avails of the spatial differential operator structure along with
the Galerkin method to approximate the system by a low–
dimensional set of ODEs [5].

In this work, we focus on a class of continuous time
reaction–diffusion systems, whose stoichiometric matrix al-
lows for a linear transformation that represents the system
as an interconnection of a linear and nonlinear PDEs. The
analytical solution of the former PDE in addition to the
numerical resolution of the Galerkin method, provide a novel
approach to solve the original nonlinear PDE. Also we
present a matrix notation for the ODEs that arises from
the Galerkin method, which has not been reported in the
literature previously, to the best of our knowledge.
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A comparison of the computational load for the pure nu-
merical, analytical/numerical, analytical/approximated, and
approximated methods is presented.

II. SYSTEM DESCRIPTION

A reaction network is composed of a group of species,
whose chemical interaction is represented by

n∑
i=1

aijSi
vj−→

n∑
i=1

bijSi. (1)

Here Si is the ith reactant or product for the jth re-
action. The symbols aij and bij denote the stoichiometric
coefficients of the corresponding species. We will focus on
biological systems that can be idealized as adiabatic and
isothermal. This allows us to fully determine the state of
the network exclusively from the species’ concentration. A
compact notation for this kind of system is given by

ċ = Nv(c). (2)

Here, c(t) : R+ → Rn comprises the trajectories of the
species concentrations in (1). The rate at which the reactants
are becoming products compose the vector v(c(t)) : R+ →
Rm. Despite the turn–over, these reaction rates are nonlinear
functions of the state c(t), which can be modelled by well–
known principles such as the Mass Action Law, Michaelis–
Menten kinetics, and Hill kinetics. The link from reaction
rates to the actual concentration change is the stoichiometric
matrix N ∈ Rn×m, whose ijth element is defined as

Nij = bij − aij .

We further assume that the reaction rate vector is split into
nonlinear, linear and constant functions, i.e.,

v(c(t)) =
(
vnl

T vl
T v0

T
)T

: R+ → Rm1+m2+m3 .
(3)

The linearity in the state of the elements in vl(c) can be
written explicitly as

vl(c) = Γc, (4)

where Γ ∈ Rm2×n.
The ordering in (3) induces the following partition in the

stoichiometric matrix

N =
(
Nnl Nl N0

)
∈ Rn×(m1+m2+m3). (5)

Although the model in (2) determines the temporal profile
of the system, it fails to reproduce some behaviours in
which the parameter uncertainty, spatial behaviour [1], [2],
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and/or geometric constrains are of interest. All this effects
can be modelled by PDEs, which, in contrast to the ODEs,
are functions which include derivatives w.r.t more than one
variable.

Here we will focus on the spatio–temporal behaviour of
the reaction network, compelled by the diffusion of species
in only one spatial direction, denoted as x ∈ Ω ⊂ R. This
effect will be modelled by Fick’s laws [6], from which we
obtain, (see [1], for example)

∂

∂t
c(t, x) = D∇2

xc(t, x) + Nv(c(t, x)). (6)

The initial and spatial restrictions are defined by initial and
boundary conditions:

c(0, x) = c0(x) ∀ x ∈ Ω ⊂ R (7)

m(t, ∂Ω) = p(t, ∂Ω)c(t, ∂Ω) + q(t, ∂Ω)
∂c(t, x)

∂n

∣∣∣∣
x=∂Ω

∀ t ∈ R+. (8)

The last equation represent the Robin boundary conditions.
When q(t, ∂Ω) = 0 this expression becomes Dirichlet
boundary conditions. Alternatively, by setting p(t, ∂Ω) = 0
we have Neumann boundary conditions.

Unless otherwise stated, we will consider systems that
satisfy the following properties on the diffusion and reaction
mechanisms.
A1) The matrix D in (6) is a scalar, d, times the identity
A2) All the reactions in (1) have at most two reactants, and

are modelled using Mass–Action kinetics.
In order to deal with the general system in (6), we introduce
a change of variables that expresses the system in a form
such that the linear and nonlinear terms appear explicitly.

Proposition 2.1: Consider a system of the form (6). As-
sume the existence of an equilibrium point c̄ ∈ Rn

+, s.t
Nv(c̄) = 0, and that the assumptions A1 and A2 are
satisfied, then the dynamics of the system in the coordinates
e(t, x) = c(t, x)− c̄ are given by

∂

∂t
e(t, x) = d∇2

xe(t, x) + Ae(t, x) + Nnlg(e(t, x)). (9)

Here A = NnlJnl(c̄) + NlJl. Moreover
Jnl = ∂

∂cvnl

∣∣
c=c̄

, Jl = ∂
∂cvl, and g(e(t, x)) = vnl(e(t, x)).

The proof follows from the Taylor expansion of (6) around
c = c̄. Note that the expression in (9) is exact.

III. REDUCED ORDER MODELS (ROM)
Solutions for system (5) with boundary conditions (7) can

be found in Hilbert spaces equipped with an inner product
and norm of the form

〈f(x), g(x)〉Ω =

∫
Ω

f(x)g(x)dx,

‖f(x)‖Ω = 〈f(x), f(x)〉1/2
Ω ,

where f(x) and g(x) are given functions over the spatial
domain Ω. We will consider a set of functions φi(x) as the
solution of the following integral eigenvalue problem∫

Ω

R(x, ξ)φi(ξ)dξ = λiφi(x). (10)

Depending on the nature of the kernel R(x, ξ), two methods
are usually considered: i) Proper Orthogonal Decomposition
(POD), where R(x, ξ) is a two point correlation matrix
constructed from empirical data [7] and ii) Laplacian Spec-
tral Decomposition (LSD), in which R(x, ξ) is the Green
function associated with the Laplacian operator [8].

In this work, we will focus on the LSD approach, hence
we will consider a special set of functions φi(x) invariant
w.r.t. the Laplacian operator; that is to say, the solution to
the eigenvalue problem in (10) satisfies

∇2
xφi(x) = λiφi(x), (11)

where λi corresponds to the eigenvalue associated with
φi(x). Moreover, we will require the eigenfunctions φi(x) to
satisfy the boundary conditions in (8) and we will consider
that the eigenfunctions are orthonormal w.r.t each other, i.e.,

〈φi(x), φj(x)〉 = δij . (12)

A complete set of functions φi(x), will act as a global
basis for the Hilbert space to which these functions belong.
Let c(t, x) be an element of such Hilbert space, then it can
be expanded as [8]

c(t, x) =

∞∑
i=1

wi(t)φi(x), (13)

where wi(t) : R+ → Rn collects the so–called modes of
φi(x).

Due to the dissipative nature of the Laplacian, a truncation
of the infinite sum in (13) will provide a good approximation
[9]. That is to say

c(t, x) ≈
p∑

i=1

wi(t)φi(x) := WT(t)φ(x), (14)

here WT(t) : R+ → Rn×p and φ(x) : Ω→ Rp.
We also note that WT(t) satisfies the following relation-

ship, given the orthonormality of the entries in φ(x),

〈c(t, x),φ(x)〉 =
〈
WT(t)φ(x),φ(x)

〉∫
Ω

c(t, x)φT (x)dx =

∫
Ω

WT(t)φ(x)φT (x)dx∫
Ω

c(t, x)φT (x)dx = WT(t). (15)

In the following, for the sake of readability, we will
frequently suppress the dependence on space and time in
W(t) and φ(x).

The next theorem, which relates the interaction of the
vectorisation operation vec (◦) and the Kroneker product ⊗,
will be useful in the following.

Theorem 3.1:

vec (AXB) =
(
BT ⊗A

)
vec (X) .

The properties of the operations above as well as the proof
of the theorem can be found in [10].

The following proposition shows how to express (6) as an
associated first order ODE of dimension pn. Here we do not
assume that the diffusion is the same for all the species nor
a prescribed form of the nonlinear terms in vnl(c).



Proposition 3.1: Consider the PDE defined in (6), with N
and v(c) as defined in (5) and (3), respectively. The weights
W(t) for which

c(t, x) ≈WT(t)φ(x),

satisfy the ODE set
d

dt
vec
(
WT

)
= Acvec

(
WT

)
+ B0vec

(
WT

0

)
(16)

+Bnl

∫
Ω

vec
(
vnl

(
WTφ

)
φT
)

dx,

where

Ac = (Λ⊗D) + (Ip ⊗NlΓ) , (17a)
B0 = Ip ⊗N0, (17b)
Bnl = Ip ⊗Nnl, (17c)

WT
0 = (v0 0m3×(p−1)), (17d)

where Λ ∈ Rp×p is a diagonal matrix, whose ii − th entry
is λi.

Proof: Firstly we note, that expressing (6) as (14),
postmultiplying the l.h.s by φT and integrating over the
spatial domain yield∫

Ω

∂

∂t
WTφφT dx =

d

dt
WT.

Accordingly, the same operation is applied to the r.h.s of (6),
considering the partition in (3) and (5), which leads to

d

dt
WT =

DWTΛ + NlΓWT + N0(vz 0)

+Nnl

∫
Ω

vnl

(
WTφ

)
φT dx.

Here we have used the properties in (12) and (11). Vectoris-
ing the expression above, yields

d

dt
vec
(
WT

)
= Acvec

(
WT

)
+ B0vec

(
WT

0

)
+Bnl

∫
Ω

vec
(
vnl

(
WTφ

)
φT
)

dx,

where the matrices Ac, B0 and Bnl have been defined in
(17).

Consider the special case in which vnl : Ω×R+ → Rm1

is a vector whose ith component is a quadratic form, i.e.,

vnl(c) =

 cTP1c
...

cTPm1c

 . (18)

Postmultiplication of the expression above by φT yields

vnl(W
Tφ)φT = φT WP1WT

...
φT WPm1WT

φφT =

(
Im1 ⊗ φT

) WP1WT

...
WPm1WT

φφT =

(
Im1 ⊗ φT

)
(Im1 ⊗W) PWTφφT .

Here P ∈ Rm1n×n is a matrix obtained by stacking the
matrices Pi one below another. Applying vec (◦) to the
expression above, we have

vec
(
vnl(W

Tφ)φT
)

=(
φφT ⊗ Im1 ⊗ φT

)
(W ⊗ Im1 ⊗W) vec (P) ,

from which we note an explicit separation of the spatial and
temporal dependencies.

IV. FURTHER REDUCTION VIA ANALYTICAL SOLUTION

In this section, we present a linear transformation that
allows us to write the system in (9) as an interconnection of
a linear and a nonlinear system. The analytical solution for
the former will be found for an infinite spatial domain, hence
the need for a numerical solution will only be necessary
for the nonlinear system. We further assume that the spatial
domain in which the nonlinear PDE is being simulated is
large enough so as to be able to assume it infinite.

Before stating the main result, we present two Lemmas.
Lemma 4.1: Consider a reaction–diffusion system of the

form
∂

∂t
e = d∇2

xe + Ae. (19)

The change of variables e = exp(At)γ in (19) gives

∂

∂t
γ = d∇2

xγ. (20)
The proof follows form the substitution of variables.

Furthermore, we note that each element of (20) is a homo-
geneous heat equation.

In the case of the Cauchy problem the use of a Green
function will convey a solution. That is to say, the solutions
to the entries in (20) are given by [11], [12]

γi(t, x) =

∫ ∞
−∞

gi(ξ)G(t, x, ξ)dξ, (21)

where gi(x) is the initial concentration of γi(t, x) and
G(t, x, ξ) is a function defined as

G(t, x, ξ) =
1

2
√
πdt

exp

(
− (x− ξ)2

4dt

)
.

Although this problem is similar to that of our interest, it
does not to include the nonlinearities of the system in (9).
The next Lemma shows how a basis of the orthogonal com-
plement of Nnl’s column space, denoted as Q, can induce
a linear transformation. The new coordinates will lead to a
heat equation, and hence an explicit formula for the solution
can be found by means of (21). Let r = colrank(Nnl). By
the Rank–Nulity Theorem, Q ∈ R(n−r)×n.

Lemma 4.2: Consider the system in (9). If

QNlJl = ΘQ, (22)

where Θ ∈ R(n−r)×(n−r), then the change of variables
exp (Θt)η = Qe transforms (9) into an associated PDE set
of order n− r, composed of homogeneous heat equations

∂

∂t
η = d∇2

xη.



Proof: Premultiplying (9) by Q yields

∂

∂t
Qe = d∇2

xQe + QAe.

If (22) holds, then

∂

∂t
Qe = d∇2

xQe + ΘQe.

Finally, by Lemma 4.1, the change of variables exp (Θt)η =
Qe leads to the expression

∂

∂t
η = d∇2

xη,

as desired.
Remark 4.1: The conditions under which Property (22)

holds, can be determined by computing

Θ = QNlJlQ
+, (23)

and substituting it in (22).
Note that Lemma 4.2 suggest a linear transformation of

the form (
y
z

)
=

(
Q
M

)
e (24)

where Q ∈ R(n−r)×n and M ∈ Rr×n is a matrix comprised
of r linearly independent rows of Nnl

T . The dynamics in
these coordinates are

∂

∂t
y = d∇2

xy + Θy (25a)

∂

∂t
z = d∇2

xMe + MAe+MNnlg(e). (25b)

By Lemma 4.2, a closed form expression for y(t, x) can be
found. With the inverse transformation

e =
(
Q+ M+

)(y
z

)
,

we can express the PDE for z as

∂

∂t
z = d∇2

xz + MAM+z + MAQ+y +

+MNnlg(y, z). (26)

As we see from Equation (25a) and Lemma 4.1 we have
available the analytical solution for y(t, x). Hence it is only
necessary to approximate the solution for z(t, x), in order
to reconstruct the full state c(t, x). Towards this end, the
following Proposition shows how the PDE for z(t, x) can be
rewritten as a ROM, by means of the LSD.

Proposition 4.1: Consider the PDE for z(t, x) as shown
in (26). Then z(t, x) can approximated as

z(t, x) ≈WT
z (t)φ(x).

Here WT
z satisfies

d

dt
vec
(
WT

z

)
= Ãzvec

(
WT

z

)
+ B̃yvec

(
WT

y

)
+B̃gvec

(
WT

g

)
, (27)

WT
g =

∫
Ω

g
(
WT

y φ,W
T
z φ
)
φT dx, (28)

and

Ãz = d
(
ΛT ⊗ Ir

)
+
(
Ip ⊗MAM+

)
(29a)

B̃y =
(
Ip ⊗MAQ+

)
(29b)

B̃g = (Ip ⊗MNnl). (29c)

Proof: First we note, that postmultiplication of the l.h.s
in (26) by φT and integration over the spatial domain yield∫

Ω

∂

∂t
WT

z φφ
T dx =

d

dt
WT

z .

Accordingly, the same operation applied to the r.h.s of (26)
leads to

d

dt
WT

z = WT
z Λ + MAM+WT

z +

+MAQ+WT
y + NnlW

T
g ,

where the properties in (12) and (11), along with the def-
inition in (28), have been used. We note that d

dtW
T
z is a

matrix in Rr×p. Applying vec (◦) to the foregoing equation
and Theorem 3.1, yield

d

dt
vec
(
WT

z

)
= dvec

(
WT

z Λ
)

+ vec
(
MAM+WT

z

)
+vec

(
MAQ+WT

y + MNnlW
T
g

)
d

dt
vec
(
WT

z

)
= Ãzvec

(
WT

z

)
+ B̃yvec

(
WT

y

)
+B̃gvec

(
WT

g

)
which is Equation (27) when the definitions in (29) are taken
into account.

V. CASE STUDY

A. Problem definition

We exemplify the use of the procedures above, by means
of the following biochemical reaction network

A+B
k1−→ 2B B

k2−→ 0 A
k3f−−⇀↽−−
k3b

0.

By letting c = ([A] [B])T , the stoichiometric matrix and
the reaction rate vector, according to the order proposed in
(5) and (3), are

N =

(
−1 0 −1 1

1 −1 0 0

)
v(c) =

(
k1c1c2 | k2c2 k3fc1 | k3b

)T
.

For this system, there exist two fixed points

c̄l =
(

k3b

k3f
0
)T

c̄h =
(

k2

k1

k3b

k2
− k3f

k1

)T
For sake of simplicity, we choose to make the Taylor
expansion of the model around c̄l. Hence, the Jacobian of
v(c) is

J(c̄l) =


0 k1k3b

k3f

0 k2

k3f 0
0 0

 .



In order to fully determine the PDE, we will consider that
x ∈ [0, 1] = Ω ⊂ R, with the initial concentrations (initial
condition) represented by(

c1(0, x)
c2(0, x)

)
=

(
c̄1

N (x− µ, σ2)

)
,

where N (◦) is a Gaussian function defined as

N (x− µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
. (30)

Also, we account for no–flux boundary conditions

∂c(t, x)

∂n

∣∣∣∣
x=∂Ω

= 0.

We further consider that the spatial domain is long enough
so as to be considered infinite.

B. Reduction of Order via Analytical Solution for y(t, x)

With these definitions, the linear transformation in (24)
becomes

T =

(
Q
M

)
=

(
1 1
−1 1

)
T−1 =

(
Q+ M+

)
=

1

2

(
1 | −1
1 | 1

)
,

which imply(
y(t, x)
z(t, x)

)
=

(
e1(t, x) + e2(t, x)
−e1(t, x) + e2(t, x)

)
.

Moreover, the corresponding initial conditions in the y, z
variables are (recall that in this coordinates, ē = 0):(

y(0, x)
z(0, x)

)
=

(
N (x− µ, σ2)
N (x− µ, σ2)

)
.

Hence Condition (22) becomes(
k3f k2

)
=
(

1
2 [k3f + k2] 1

2 [k3f + k2]
)
, (31)

which is satisfied by letting k3f = k2 = k. Moreover, from
Equation (23) follows Θ = −k.

As stated in Section IV we can compute the spatio–
temporal profile of the system by a PDE of order r =
colrank(Nnl) = 1. This reduced system is given by (26),
which, in our case, is

∂

∂t
z(t, x) = d∇2

xz +

(
k1k3b

k
− k
)
z +

k1k3b

k
y +

1

2
k1

(
y2 − z2

)
. (32)

In turn, from Lemma 4.2 and (21), y(t, x) satisfies

y(t, x) = exp(−kt)
∫ ∞
−∞
N (x− µ, σ2)N (x− ξ, 2dt)dξ

y(t, x) = exp(−kt)N (x− µ, 2dt+ σ2) (33)

C. Analytical Solution & LSD

Now, in order to perform the simulation via the analytical
solution & LSD approach, it is necessary to compute the
modes wT(t) for y(t, x) and g(y, z), as noted in Proposition
4.1. For wT

y (t) we prefer the numerical computation to avoid
the evaluation of a complex function in the code. In turn,
from (28),

wT
g (t) =

∫
Ω

g(wT
y φ,w

T
z φ)φT dx

=
k1

2

∫ 1

0

(wT
y φ)2φT − (wT

z φ)2φT dx

wT
g (t) =

k1

2

∫ 1

0

φT
(
wywT

y −wzw
T
z

)
φφT dx.(34)

The vectorised expression of the term φT
(
wwT

)
φφT is

vec
(
φT
(
wwT

)
φφT

)
=

(
φφT ⊗ φT

)
vec
(
wwT

)
,

(35)

from which we note an explicit separation of the spatial and
temporal dependency. Each of the terms in the matrix φφT⊗
φT is a product of three elements of the basis. Their integral
over the spatial domain have this simple expression∫ 1

0

φiφjφkdx =

{
1, i = 1, j = k ∀ j, k ∈ [1, p]

0, otherwise.
(36)

Then we can write the Equation (34) as

vec
(
wT

g

)
(t) =

k1

2

(∫ 1

0

φφT ⊗ φT dx

)
(37)[

vec
(
wy(t)wT

y (t)−wz(t)wT
z (t)

)]
.

D. LSD

Finally, we assess the performance of the previous meth-
ods with the reduced order model obtained from (6). As
stated in Section III, the weights for this PDE satisfy
d

dt
vec
(
WT

)
= [d (Λ⊗ I2) + (Ip ⊗NlΓ)] vec

(
WT

)
+ (Ip ⊗N0) vec ((v0 0)) +

+ (Ip ⊗Nnl)

(∫
Ω

φφT ⊗ φT dx

)
(W ⊗W) vec (P) . (38)

E. Implementation and Results

The simulations were performed in a PC with a processor
Intel Core 2 Duo at 2.66GHz and 3GB of RAM, running
Ubuntu 11.04 and Matlab 7.5.

Four different implementation were considered in order to
compare the methods:

1) Numerical Implementation. We avail of the function
pdepe implemented in Matlab

2) Analytical & Numerical. Using the expression for
y(t, x) in (33), we simulated (32) with pdepe

3) Analytical & LSD. We implemented (27), where
wT

g (t) have been defined in (37) and wT
y (t) are com-

puted numerically. In this case, we used the ODE15s
solver.



4) LSD. The implementation of (38) was simulated by
the ODE15s solver.

A global basis for Ω with no–flux boundary conditions,
which comply with (11) and (12) is given by

φi(x) = kicos(2π(i− 1)x)

ki =

{
1 , i = 1√
2 , i 6= 1

.

In turn, the eigenvalues are

λi = −[2π(i− 1)]2 ∀ i ∈ [1, p].

Figure 1 shows the surfaces obtained with the four dif-
ferent methods. Moreover, we compared the time required
for these simulation and compared them with the Numerical
Implementation, by means of the expression

Ei[%] = 100
tnumeric − ti

ti
,

where tnumeric is the time required to simulate the model
with the Matlab function pdepe and ti stands for the time re-
quired for each other method. The results of this assessment
are presented in Figure 2, which shows Ei[%] as a function
of number of nodes in the spatial domain used for the
simulation. It is important to note that this result is for p = 34
number of eigenfunctions. As this number decreases, the
LSD approach improves its performance w.r.t. the Analytical
& LSD implementation and conversely. We also note a that
the value Ei[%] for the Analytical & Numerical approach
tends to remain constant as the number of nodes varies.

VI. CONCLUSIONS

We presented a set of state transformations which aid to
reduce the order of a class of reaction–diffusion systems
so as to make their simulation quicker. The amount of the
reduction depends closely to the stoichiometry of the reaction
network taken into account. We note that the computational
speed of the Analytical & LSD approach out perform the rest
of the methods considered, when the number of eigenfunc-
tions used is large enough. In addition, the methods which
include an analytical solution allow further dynamical study
such as sensitivity and stability analysis.

Fig. 1. Comparison of the methods for solving the PDE in the case study.
From left to right this figure depicts the surface obtained by numerical,
analytical/numerical, analytical/LSD, and LSD approaches, respectively.
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Fig. 2. CPU time assessment for the three proposed methods to
solve a PDE. The parameters used for the simulation are: p = 34,
{k1, k2, k3b, k3f} = {1, 2, 2, 1}, d = 0.001, σ2 = 0.01, µ = 0.5.


