50,814 research outputs found

    Disk stars in the Milky Way detected beyond 25 kpc from its center

    Full text link
    CONTEXT. The maximum size of the Galactic stellar disk is not yet known. Some studies have suggested an abrupt drop-off of the stellar density of the disk at Galactocentric distances R15R\gtrsim 15 kpc, which means that in practice no disk stars or only very few of them should be found beyond this limit. However, stars in the Milky Way plane are detected at larger distances. In addition to the halo component, star counts have placed the end of the disk beyond 20 kpc, although this has not been spectroscopically confirmed so far. AIMS. Here, we aim to spectroscopically confirm the presence of the disk stars up to much larger distances. METHODS. With data from the LAMOST and SDSS-APOGEE spectroscopic surveys, we statistically derived the maximum distance at which the metallicity distribution of stars in the Galactic plane is distinct from that of the halo populations. RESULTS. Our analysis reveals the presence of disk stars at R>26 kpc (99.7% C.L.) and even at R>31 kpc (95.4% C.L.).Comment: 4 pages, accepted to be published in A&A-Letter

    Turning waves and breakdown for incompressible flows

    Full text link
    We consider the evolution of an interface generated between two immiscible incompressible and irrotational fluids. Specifically we study the Muskat and water wave problems. We show that starting with a family of initial data given by (\al,f_0(\al)), the interface reaches a regime in finite time in which is no longer a graph. Therefore there exists a time tt^* where the solution of the free boundary problem parameterized as (\al,f(\al,t)) blows-up: \|\da f\|_{L^\infty}(t^*)=\infty. In particular, for the Muskat problem, this result allows us to reach an unstable regime, for which the Rayleigh-Taylor condition changes sign and the solution breaks down.Comment: 15 page

    SUSY signals at HERA in the no-scale flipped SU(5) supergravity model

    Full text link
    Sparticle production and detection at HERA are studied within the recently proposed no-scale flipped SU(5)SU(5) supergravity model. Among the various reaction channels that could lead to sparticle production at HERA, only the following are within its limit of sensitivity in this model: epe~L,Rχi0+X,ν~eχ1+Xe^-p\to \tilde e^-_{L,R}\chi^0_i+X, \tilde \nu_e\chi^-_1+X, where χi0(i=1,2)\chi^0_i(i=1,2) are the two lightest neutralinos and χ1\chi^-_1 is the lightest chargino. We study the elastic and deep-inelastic contributions to the cross sections using the Weizs\"acker-Williams approximation. We find that the most promising supersymmetric production channel is right-handed selectron (e~R\tilde e_{R}) plus first neutralino (χ10\chi^0_1), with one hard electron and missing energy signature. The ν~eχ1\tilde\nu_e\chi^-_1 channel leads to comparable rates but also allows jet final states. A right-handedly polarized electron beam at HERA would shut off the latter channel and allow preferentially the former one. With an integrated luminosity of {\cal L}=100\ipb, HERA can extend the present LEPI lower bounds on me~R,mν~e,mχ10m_{\tilde e_R}, m_{\tilde\nu_e},m_{\chi^0_1} by \approx25\GeV, while {\cal L}=1000\ipb will make HERA competitive with LEPII. We also show that the Leading Proton Spectrometer (LPS) at HERA is an excellent supersymmetry detector which can provide indirect information about the sparticle masses by measuring the leading proton longitudinal momentum distribution.Comment: 11 pages, 8 figures (available upon request as uuencoded file or separate ps files), tex (harvmac) CTP-TAMU-15/93, CERN/LAA/93-1

    1.5V fully programmable CMOS Membership Function Generator Circuit with proportional DC-voltage control

    Get PDF
    A Membership Function Generator Circuit (MFGC) with bias supply of 1.5 Volts and independent DC-voltage programmable functionalities is presented. The realization is based on a programmable differential current mirror and three compact voltage-to-current converters, allowing continuous and quasi-linear adjustment of the center position, height, width and slopes of the triangular/trapezoidal output waveforms. HSPICE simulation results of the proposed circuit using the parameters of a double-poly, three metal layers, 0.5 μm CMOS technology validate the functionality of the proposed architecture, which exhibits a maximum deviation of the linearity in the programmability of 7 %

    Jets, knots and tails in planetary nebulae: NGC 3918, K 1-2 and Wray 17-1

    Get PDF
    We analyze optical images and high-resolution, long-slit spectra of three planetary nebulae which possess collimated, low-ionization features. NGC 3918 is composed of an inner, spindle-shaped shell mildly inclined with respect to the plane of the sky. Departing from the polar regions of this shell, we find a two-sided jet expanding with velocities which increase linearly with distance from 50 to 100 km/s. The jet is probably coeval with the inner shell (with the age of approximately 1000 D yr, where D is the distance in kpc), suggesting that its formation should be ascribed to the same dynamical processes which also shaped the main nebula, and not to a more recent mass loss episode. We discuss the formation of the aspherical shell and jet in the light of current hydrodynamical and magnetohydrodynamical theories. K 1-2 is a planetary nebula with a close binary nucleus which shows a collimated string of knots embedded in a diffuse, elliptical shell. The knots expand with a velocity similar to that of the elliptical nebula (25 km/s), except for an extended tail located out of the main nebula, which linearly accelerates up to 45 km/s. We estimate an inclination on the line of the sight of 40 degres for the string of knots; once the orientation of the orbit is also determined, this information will allow us to test the prediction of current theories of the occurrence of polar jets from close binary systems. Wray 17-1 has a complex morphology, showing two pairs of low-ionization structures located in almost perpendicular directions from the central star, and embedded in a large, diffuse nebula. The two pairs show notable similarities and differences, and their origin is very puzzling.Comment: 20 pages plus 10 figures. ApJ recently published (ApJ 523, 721 (1999)

    Modelling Defect Cavities Formed in Inverse Three-Dimensional Rod-Connected Diamond Photonic Crystals

    Get PDF
    Defect cavities in 3D photonic crystal can trap and store light in the smallest volumes allowable in dielectric materials, enhancing non-linearities and cavity QED effects. Here, we study inverse rod-connected diamond (RCD) crystals containing point defect cavities using plane-wave expansion and finite-difference time domain methods. By optimizing the dimensions of the crystal, wide photonic band gaps are obtained. Mid-bandgap resonances can then be engineered by introducing point defects in the crystal. We investigate a variety of single spherical defects at different locations in the unit cell focusing on high-refractive-index contrast (3.3:1) inverse RCD structures; quality factors (Q-factors) and mode volumes of the resonant cavity modes are calculated. By choosing a symmetric arrangement, consisting of a single sphere defect located at the center of a tetrahedral arrangement, mode volumes < 0.06 cubic wavelengths are obtained, a record for high index cavities.Comment: 7 pages, 8 figure

    Electrical transport properties of nanostructured ferromagnetic perovskite oxides La_0.67Ca_0.33MnO_3 and La_0.5Sr_0.5CoO_3 at low temperatures (5 K > T >0.3 K) and high magnetic field

    Full text link
    We report a comprehensive study of the electrical and magneto-transport properties of nanocrystals of La_0.67Ca_0.33MnO_3 (LCMO) (with size down to 15 nm) and La_0.5Sr_0.5CoO_3 (LSCO) (with size down to 35 nm) in the temperature range 0.3 K to 5 K and magnetic fields upto 14 T. The transport, magnetotransport and non-linear conduction (I-V curves) were analysed using the concept of Spin Polarized Tunnelling in the presence of Coulomb blockade. The activation energy of transport, \Delta, was used to estimate the tunnelling distances and the inverse decay length of the tunnelling wave function (\chi) and the height of the tunnelling barrier (\Phi_B). The magnetotransport data were used to find out the magnetic field dependences of these tunnelling parameters. The data taken over a large magnetic field range allowed us to separate out the MR contributions at low temperatures arising from tunnelling into two distinct contributions. In LCMO, at low magnetic field, the transport and the MR are dominated by the spin polarization, while at higher magnetic field the MR arises from the lowering of the tunnel barrier by the magnetic field leading to an MR that does not saturate even at 14 T. In contrast, in LSCO, which does not have substantial spin polarization, the first contribution at low field is absent, while the second contribution related to the barrier height persists. The idea of inter-grain tunnelling has been validated by direct measurements of the non-linear I-V data in this temperature range and the I-V data was found to be strongly dependent on magnetic field. We made the important observation that a gap like feature (with magnitude ~ E_C, the Coulomb charging energy) shows up in the conductance g(V) at low bias for the systems with smallest nanocrystal size at lowest temperatures (T < 0.7 K). The gap closes as the magnetic field and the temperature are increased.Comment: 13 figure
    corecore