2,319 research outputs found

    Quantum corrections to the conductivity of fermion - gauge field models: Application to half filled Landau level and high-TcT_c superconductors

    Full text link
    We calculate the Altshuler-Aronov type quantum correction to the conductivity of 2d2d charge carriers in a random potential (or random magnetic field) coupled to a transverse gauge field. The gauge fields considered simulate the effect of the Coulomb interaction for the fractional quantum Hall state at half filling and for the tJt-J model of high-TcT_c superconducting compounds. We find an unusually large quantum correction varying linearly or quadratically with the logarithm of temperature, in different temperature regimes.Comment: 12 pages REVTEX, 1 figure. The figure is added and minor misprints are correcte

    A Discussion on Dirac Field Theory, No-Go Theorems and Renormalizability

    Full text link
    We study Dirac field equations coupled to electrodynamics with metric and torsion fields: we discuss how special spinorial solutions are incompatible with torsion; eventually these results will be used to sketch a discussion on the problem of renormalizability of point-like particles.Comment: 10 page

    Non linear equation of state and effective phantom divide in brane models

    Full text link
    Here, DGP model of brane-gravity is analyzed and compared with the standard general relativity and Randall-Sundrum cases using non-linear equation of state. Phantom fluid is known to violate the weak energy condition. In this paper, it is found that this characteristic of phantom energy is affected drastically by the negative brane-tension λ\lambda of the RS-II model. It is found that in DGP model strong energy condition(SEC) is always violated and the universe accelerates only where as in RS-II model even SEC is not violated for 1<ρ/λ<21 < \rho/\lambda < 2 and the universe decelerates

    Generalised second law of thermodynamics for interacting dark energy in the DGP brane world

    Full text link
    In this paper, we investigate the validity of the generalized second law of thermodynamics (GSLT) in the DGP brane world when universe is filled with interacting two fluid system: one in the form of cold dark matter and other is holographic dark energy. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon or the event horizon. The universe is chosen to be homogeneous and isotropic FRW model and the validity of the first law has been assumed here

    Holographic dark energy in the DGP model

    Full text link
    The braneworld model proposed by Dvali, Gabadadze and Porrati leads to an accelerated universe without cosmological constant or other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holo- graphic dark energy is included, taken the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated universe flat (de Sitter like expansion) for the two branch: {\ko} = \pm1 of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. ManuscriptComment: Latex, 12 pages, 4 figures; Submitted to Phys. Lett.

    Higher Dimensional Cosmology with Some Dark Energy Models in Emergent, Logamediate and Intermediate Scenarios of the Universe

    Full text link
    We have considered N-dimensional Einstein field equations in which four-dimensional space-time is described by a FRW metric and that of extra dimensions by an Euclidean metric. We have chosen the exponential forms of scale factors a and d numbers of b in such a way that there is no singularity for evolution of the higher dimensional Universe. We have supposed that the Universe is filled with K-essence, Tachyonic, Normal Scalar Field and DBI-essence. Here we have found the nature of potential of different scalar field and graphically analyzed the potentials and the fields for three scenario namely Emergent Scenario, Logamediate Scenario and Intermediate Scenario. Also graphically we have depicted the geometrical parameters named statefinder parameters and slow-roll parameters in the higher dimensional cosmology with the above mentioned scenarios.Comment: 21 pages, 36 figure

    Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells

    Get PDF
    Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells

    Supersymmetric CP Violation in BXsl+lB \to X_s l^+ l^- in Minimal Supergravity Model

    Full text link
    Direct CP asymmetries and the CP violating normal polarization of lepton in inclusive decay B \to X_s l^+ l^- are investigated in minimal supergravity model with CP violating phases. The contributions coming from exchanging neutral Higgs bosons are included. It is shown that the direct CP violation in branching ratio, A_{CP}^1, is of {\cal{O}}(10^{-3}) for l=e, \mu, \tau. The CP violating normal polarization for l=\mu can reach 0.5 percent when tan\beta is large (say, 36). For l=\tau and in the case of large \tan\beta, the direct CP violation in backward-forward asymmetry, A_{CP}^2, can reach one percent, the normal polarization of \tau can be as large as a few percent, and both are sensitive to the two CP violating phases, \phi_\mu and \phi_{A_0}, and consequently it could be possible to observe them (in particular, the normal polarization of \tau) in the future B factories.Comment: 14 pages, latex, 5 figure

    Tracking azimuthons in nonlocal nonlinear media

    Full text link
    We study the formation of azimuthons, i.e., rotating spatial solitons, in media with nonlocal focusing nonlinearity. We show that whole families of these solutions can be found by considering internal modes of classical non-rotating stationary solutions, namely vortex solitons. This offers an exhaustive method to identify azimuthons in a given nonlocal medium. We demonstrate formation of azimuthons of different vorticities and explain their properties by considering the strongly nonlocal limit of accessible solitons.Comment: 11 pages, 7 figure
    corecore