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Highlights 

 Dinocysts grouped by salinity, providing long-term water level/flow 

reconstructions. 

 Dinocysts show a higher highstand after the Mangyshlak lowstand than 

previously seen. 

 A South to North water flow gradient at 8.5–4 cal ka BP, reversed from the 

current one. 

 Water level influenced by precipitation over Karakum and perhaps indirectly 

monsoon. 

 A major turnover in dinocyst assemblages in all three sequences at c. 4 cal. ka 

BP. 

Abstract 

Understanding the long-term environmental forcings driving Caspian Sea (CS) water 

levels is of utmost importance, not only owing to its large size, or to the surrounding 

developing economies but also to improve global climate models and forecasts. 

However, Late Quaternary CS level changes and their amplitude are mostly 

documented from incomplete coastal sediment records. Because of the CS 

idiosyncrasies, that behaves neither as a sea nor as a lake, the methods used to 

reconstruct water levels in the global ocean or in freshwater lakes do not always apply. 

Here, we propose a first step toward the use of dinoflagellate cysts records to 

reconstruct qualitative changes in water mass, focusing on new and published deep-

water sedimentary sequences from the south and middle CS basins. Trends in water 

level changes are reconstructed on the relative proportions of dinocyst assemblages 

with different levels of brackishness. 
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A higher highstand than previously seen is reconstructed post-Mangyshlak lowstand. 

A reverse water flow gradient from S to N, not previously detected, is identified at 8.5–

8 to 4 cal ka BP. A major turnover in dinocyst assemblage is found at 4 cal ka BP. 

While the Volga River is the main source of water nowadays, we propose that the 

source of water to maintain the 8.5–8 to 4 cal ka BP highstand is the now-disconnected 

drainage basin of the Amu-Darya. The CS was at that time most likely strongly 

influenced by low latitude climates, with more precipitation over the Karakum and, 

perhaps, even indirect monsoonal influence. 

Keywords 

Quaternary, Palaeolimnology, Southwestern Asia, Pontocaspian, Micropalaeontology, 

dinocyst, Water flow direction, Amu-Darya 

1. Introduction 

The long-term water-level histories of ancient lakes are fingerprinted in their 

sediments, and both biological and non-biological proxies may be used to unravel 

long-term environmental changes. In fact, numerous examples of long-term rapid 

water-level changes with large vertical amplitudes (>500 m) have been exposed for 

large lakes, such as Tanganyika, Victoria, Malawi (Cohen et al., 2007), Baikal (Colman 

et al., 1993), and Issyk-Kul (Gebhardt et al., 2017). The annual to decadal amplitudes 

observed with the instrumental record are in the order of 10–50 times smaller than the 

centennial to millennial ones (Lahijani et al., 2016), as they only capture the short-term 

variability. In addition, the instrumental record of large lakes dates back to the 19th 

century at most (Leroy et al. in press). Of interest in large lakes is the understanding 

of long-term water level fluctuations, as they may be linked to climate and, thus, used 

to forecast future water-level changes that will affect humans. In addition, large lakes, 

especially endorheic ones, are very susceptible to climatic change (Arpe et al., 2018), 

and, owing to their size, they are also vulnerable to hydrographic changes that may 

affect dramatically exchanges between water masses (Lahijani et al. in press). 

The Caspian Sea (CS) is the largest inland lake in the world, with a water area 

of 386,400 km2 and volume of 78,200 km3, three times larger than Lake Baikal. The 

detailed history of CS Late Quaternary water level changes is notoriously poorly 

known, even for the last millennia (Naderi Beni et al., 2013; Bezrodnykh and Sorokhin, 

2016; Leroy et al. in press). The fragmentary known information indicates that CS level 

changes, at times rapid, have affected large basin areas, especially the shallow north 

basin and the now exposed low-lying Caspian depression (Fig. 1). Continuous deep-

water sedimentary sequences are the appropriated geo-environmental archives to 

unravel information on water level changes, ideally when taken below the lowest 

lowstand and away from delta influence prone to varying sedimentation rates and 

mass-wasting movements. 
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Fig. 1. The Caspian Sea setting. A: Precipitation (mm/month) and main drainage basins 

influencing the Caspian Sea (CS = Caspian Sea, ASB = Aral Sea Basin); B: Location of the 

Caspian Sea and of the sites mentioned in the text. The grey arrow follows the Manych 

spillway. The black arrow shows where Turkmenistan is. 

However, classical methods to reconstruct sea-level change in global ocean 

settings, such as foraminifera, often do not work well in the CS due to its unique 

features (e.g. absence of foraminifera below 50 m water depth, Boomer et al., 2005; 

Yanko-Hombach, 2007; Kh. Saidova pers. comm. 2011). The same happens with 

other methods used to reconstruct water levels in freshwater lakes, such as diatoms 

(Svalnov and Kazarina, 2008; Leroy et al., 2018). Therefore, geoscientists working on 

the CS must find additional proxies. In this paper, we evaluate the 

palaeoenvironmental potential of organic-walled dinoflagellates, unicellular 

phytoplankton organisms that form cysts that may be preserved in sediments and are 

called dinocysts. A recent major compilation of surface samples in the Pontocaspian 

region has shown that dinocyst assemblages are sensitive to salinity changes, 

amongst other parameters, and may provide invaluable qualitative information to 

detect the flow of water masses, as well as water-level fluctuations at millennial, 

centennial and, even, decadal scales (Mudie et al., 2017). 
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This work aims to test the use of dinocyst records to reconstruct changes in CS 

water masses and levels. The available continuous sequences with detailed dinocyst 

records (i.e. dinocyst counts at least >100 per sample) covering the Late Quaternary 

derive from deep-water sequences (>315 m) located at the middle and south CS 

basins only (Leroy et al., 2007, 2013c, 2014). A lagoon sequence, core TM (Leroy et 

al., 2013a), from the SE coastal basin covers the Late Quaternary chronology and has 

appropriate dinocyst counts. However, its lagoonal character is reflected in a large 

hiatus. In addition, several Holocene palynological records from cores from the north 

basin are also available (Richards et al., 2014). However they do not cover the 

Pleistocene-Holocene transition, their dinocyst counts are low, and the presence of 

reworking material and erosional influence are noticeable as they are located in a 

deltaic environment. The specific objectives are three. First, to present the available 

Late Quaternary dinocyst records from the south and middle CS basins together with 

a new dinocyst record from the middle basin. Second, to compare the dinocyst records 

to previous water level reconstructions performed using other proxies and discuss 

dissimilarities. Third, to unravel water flow directions between the middle and the south 

basins in order to detect any major change in palaeo-river discharge. 

2. Setting 

2.1. Caspian Sea setting and previous reconstructions 

The CS provides many economic resources to the area, such as the rich oil and gas 

fields as well as fisheries, including sturgeon for caviar. The CS is a large endorheic 

lake made up of three basins, deepening from the very shallow north (5 m), via the 

deep middle (maximal water depth of 788 m), to the deepest south basin (maximal 

water depth 1025 m) (Kostianoy and Kosarev, 2005). CS water level, as measured in 

2018, is at 28 m bsl (Leroy et al. in press). The modern water surface salinity shows a 

gradient from freshwater in the north basin large Volga delta to 13 psμ in the middle 

and south basins due to larger freshwater inflow in the north and larger evaporation in 

the south (Cazenave et al., 1997; Kostianoy and Kosarev, 2005; Leroy et al., 2018, in 

press; Lahijani et al. in press). 

The CS is fed by several rivers but receives none from the desertic east side. 

The main river contributing water to the CS is the Volga, representing 80–90% of the 

water inflow (Leroy et al. in press). The Volga has a catchment extending far north, 

reaching >60 °N in several places (Fig. 1). The CS level is affected by precipitation on 

the Volga catchment, especially by changes in summer precipitation and by 

evaporation over its surface, as well as by river inflow volume (Arpe et al., 2007, 2012). 

The catchment of the CS is under the influence of the Westerlies (Arpe et al., 2018). 

So far, available climatic models do not consider a dynamic CS surface in their 

simulations despite the effect that changes in the size of the largest inland water body 

in the world could have on climate. In fact, it has recently been shown that the CS size 

has a clear influence on regional and, even to some instance, global climate (Arpe et 

al., 2018). 

The main sources of information on CS levels are Varushchenko et al. (1987), 

Klige (1990), Rychagov (1997), Mamedov (1997), Chepalyga (2007), Svitoch (2009, 
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2012), and Kakroodi et al. (2012). Leroy et al. (in press) compiled the various CS level 

reconstructions, the comparison highlighting some similarities but, in general, a lack 

of spatiotemporal congruence between studies. In brief, these reconstructions indicate 

that the CS levels have changed by more than 150 m since the Last Glacial Maximum 

(LGM). During the deglaciation, the CS levels were rather high with a peak in the early 

Khvalynian at 50 m asl (although a revision might indicate only + 35 m, Makshaev et 

al., 2015; Arslanov et al., 2016). A rather short lowstand is reconstructed after the early 

Khvalynian highstand. This lowstand is followed by the late Khvalynian highstand 

whose upper boundary is classically located at the end of the Pleistocene. It seems 

that the CS experienced a major lowstand at the beginning of the Holocene, i.e. the 

Mangyshlak lowstand, with levels perhaps as low as 113 m bsl. The duration of this 

lowstand varies between 1 and 3 ka, and the CS levels rose thereafter, although with 

levels lower than during the Khvalynian. This period is known as the Neocaspian, that 

itself counts several, rather brief lowstands. Some authors make the Neocaspian start 

much later than 1–3 millennia after the Holocene onset according to mollusc 

assemblages, i.e. c. 7.4 cal. ka BP (published as c. 6.5 14C ka BP). 

2.2. Idiosyncrasy of the CSL reconstruction 

A small range of proxies has been used with varied success to produce the available 

CS level reconstructions. Lithology is the most common one, focusing on the 

occurrence of discontinuities, lateral facies change, channels, grain-size and 

carbonate content (Bezrodnykh and Sorokhin, 2016). Unfortunately, no 

comprehensive seismic studies of the CS are available. Two main reasons explain the 

paucity of seismic studies in such an economically and environmentally important area 

of the world. Firstly, because just few scientific studies have been undertaken so far, 

probably linked to the lack of research vessels and the large size of the area. Secondly, 

among the scarce work done on the Caspian basin, most of it has been performed by 

the petroleum industry, thus remaining confidential. 

The most common biotic proxy applied so far in the CS is mollusc shells, used 

to reconstruct past salinities and/or depths mostly based on occurrences and, more 

rarely, assemblages (Svitoch, 2009, 2012; Leroy et al., 2018). Moreover, mollusc 

shells are also used for Quaternary stratigraphy and as material for radiocarbon dating 

(Yanina, 2013). The measurement of oxygen isotopes has been used in the CS on a 

lagoon (Kakroodi et al., 2015), on deep cores (Chalié et al., 1997; Ferronsky et al., 

1999), as well as tested on various biota in a surface sediment transect (Leroy et al., 

2018). The latter obtained mixed success, as more than one factor seem to drive 

oxygen isotope ratios, the best outcome of the δ18O tests being with ostracods. 

Other CS biotas include benthic ostracods (Boomer et al., 2005; Leroy et al., 

2018) and diatoms, whose ecology is often poorly known. For the latter, many species 

are very euryhaline, thus not very informative, and problems of preservation do occur 

(Leroy et al., 2018; Chalié pers. comm.). Benthic foraminifers live only down to 50 m 

water depth in the CS, drastically limiting their use (Boomer et al., 2005; Leroy et al., 

2013b, 2018). Although molluscs and benthic ostracods are present down to the CS 

bottom, they dwell in low concentrations only (Leroy et al., 2018). Dinocysts are one 

of the rare aquatic biota remaining present at all depths in significant concentrations 
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and in excellent preservation state. In brief, at depths deeper than the lowest water 

levels of the CS since the LGM, many biotic proxies are of limited use and remain in 

urgent need of calibration (Leroy et al., 2018). 

3. Material and methods 

3.1. The datasets 

This work uses dinocyst records from three datasets (Table 1) from cores located in 

the deep south and middle CS basins (>315 m depth; Fig. 1). The dataset from the 

south basin is made of three complementary cores: a Kullenberg core GS05, a pilot 

core CP14 and an Usnel core US02 (Leroy et al., 2007, 2013c). The first dataset from 

the middle basin is made of two complementary cores: a Kullenberg core GS18 (called 

GS20 in Chalié et al., 1997; Ferronsky et al., 1999; Kuprin et al., 2003; Boomer et al., 

2005; Tudryn et al., 2013, 2016) and a pilot core CP18 (Leroy et al., 2007, 2014). Each 

of these dinocyst datasets has already been discussed separately along with pollen 

data and dating information (Leroy et al., 2007, 2013c, 2014). 

Table 1. Sediment cores from the middle and south basins of the CS discussed in this work. 

Datas

et 

Core 

name 

Latitude N, 

Longitude E 

Water 

depth 

in m 

Chronology Reference 

 Middle basin    

1 Sh7 
41°49’14.10”5

0°23’52.62 
749 

tie points after 

comparison of 

palynological records with 

GS18 and GS05 (Table 

SI3) 

This work 

2 CP18 
41°32’53” 

51°06’04” 
480 

younger than GS18 with 

35–95 cm overlap, 

established by 

comparison of 

palynological diagrams 

with core GS18 

Leroy et al. 

(2007) 

2 GS18 
41°32’53” 

51°06’04” 
479 

6 14C on ostracods; age-

depth model after 

applying a 370-year 

reservoir effect, 

calibrating with the 

IntCal13.14C curve, and 

using a smooth spline 

solution (smooth factor of 

0.3) 

Leroy et al. 

(2014), Tudryn 

et al. (2016), 

this work 

 South basin    

3 US02 
39°16’  

51°28’ 
315 Radionuclides 

Leroy et al. 

(2013b) 

3 CP14 
39°16’18” 

51°27’47” 
330 

3 14C on bulk after 

correction for detritics: 

age-depth model after 

calibrating with 

IntCal98.14C curve, and  

Leroy et al. 

(2007) 
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and using linear 

interpolation between 

dates 

3 GS05 38°45’39” 

51°32’16” 

518 18 14C on bulk 

carbonates and 

ostracods; age-depth 

model after applying a 

370-year reservoir effect, 

calibrating with the 

IntCal09.14C curve, and 

using a smooth spline 

solution (smooth factor of 

0.3) 

Leroy et al. 

(2013c) 

Twenty-two new dinocyst samples have been added at the base of core GS18 

using the same age-depth model, cyst extraction and zonation methods as in the 

upper part of the core (Leroy et al., 2014) (SI 1). The lithology of this new interval is 

similar to the lithology of the upper part of the core, consisting of fine-grained 

sediments with bedding and in the lower part carbonate contents around 10% (Leroy 

et al., 2014). These basal samples were initially considered deposited under different 

taphonomy based on the mainly reworked pollen content. The reworked content was 

identified because of the corroded and darker aspect of the pollen grains. Dinocysts 

did not show signs of reworking. However, more recently Tudryn et al. (2016) indicated 

that the reworking was essentially from a strong Volga inflow. The pollen can be water 

transported hundreds of km along the Volga from its terrestrial source to the CS basin. 

However, the picture is very different with the dinocysts, as they could only come from 

a few tens of km from the north basin, since no dinoflagellates live in the Volga River. 

Therefore, the dinocysts are expected to be largely in-situ. 

Together with the twenty-two new samples of core GS18, we present the 

palynological results of a new sequence from the middle basin, core Sh7, located 

∼65 km further north than core GS18 (Table 1, Fig. 1). This 600 cm long core of 14 cm 

diameter was taken in 2010 as part of a research programme of Lisitzyn (P.P. Shirshov 

Institute of Oceanology, Moscow). The palynological extraction, counting and zonation 

methods of the 31 samples analysed are the same as for the two other datasets (Leroy 

et al., 2007, 2013c, 2014). Six radiocarbon dates obtained from ostracods have 

yielded results that are not in stratigraphic order for an unknown reason (SI 2). 

Amongst the various reasons that could have affected the radiocarbon results other 

than just transport (reworking), are methane seepage and mud volcanoes (Leroy et 

al., 2018). Therefore, as the radiocarbon dates could not be used to build an age-

depth model for core Sh7, the pollen and dinocyst records of core Sh7 have been 

compared with those from the nearby core GS18, with some additional information 

from core GS05, in order to identify tie points that could shed light onto core Sh7 

chronological framework. Sixteen tie points have been found combining common 

major changes, disappearances and appearances in pollen (twelve tie points) and 

dinocysts (four tie points) assemblages (Fig. 2, Table SI 3). 
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Fig. 2. Comparison of the dinocyst synthetic records of the middle basin deep-water cores 

core GS18 and core Sh7 depicting the detected tie points (black lines) after comparing 

palynological records (more information in Table SI 3) to suggest a hypothetical chronological 

framework for core Sh7. Groups as in Table 2. The horizontal blue lines on core Sh7 are the 

four main taphonomical changes (tapho I to IV) (p = pollen, d = dinocyst) (SI 3). The dashed 

yellow line shows the main (and only) change in grain size for core Sh7, with a slight increase 

of the silty fraction. Br = Brigantedinium, L mach = Lingulodinium machaerophorum. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the Web 

version of this article.) 

In all these datasets, a minimum of 100 dinocysts was counted and identified 

in most samples (except in some of the additional samples at the base of GS18). Varia 

includes unknown, reworked and undeterminable cysts. The total concentration of 

dinocysts is shown in dinocysts per ml of wet sediment. P/D is the ratio between pollen 

concentration and dinocyst concentration. 

The granulometry on 39 samples of core Sh7 was obtained by sieving without 

HCl attack and the facies described according to the classification adopted at the 

Institute of Oceanology of Russian Academy of Sciences (Petelin, 1967). 

3.2. The taxa and their ecological requirements 

The CS is clearly less diverse in dinoflagellate species than the Black Sea (Mudie et 

al., 2017). Moreover, fewer cysts are known than motile forms (Lewis et al., 2018). In 

what follows we summarise the requirements of the dinocysts found in the CS. 

Pyxidinopsis psilata and Spiniferites cruciformis are often considered as living 

in salinities ≤7 psμ (Dale, 1996). However, they have been found at higher salinities 

up to 18 psμ in some sites, but the cysts are present in low percentages only (Mudie 

et al., 2017). Spiniferites belerius seems to occur more frequently in waters with 

fluctuating salinities (Mudie et al., 2017). 

The salinities in which Impagidinium caspienense lives are poorly known, as it 

is a new species apparently endemic to the CS, Aral Sea and Karabogaz-Gol with rare 

occurrences in the Black Sea (Mudie et al., 2017). Marret et al. (2004) have shown 

that it is very abundant in surface sediment samples of the CS with surface water 

salinities of 13 psμ. As I. caspienense has been observed in the highly saline waters 

of the Karabogaz-Gol (Leroy et al., 2006), higher salinities are possible for this 

species. A link between the cyst I. caspienense and the motile stage Gonyaulax baltica 

has recently been established (Mudie et al., 2017; Mertens et al., 2017), with 

experimentation on cyst formation showing a lower limit at around 10–13 psμ 

(Ellegaard et al., 2002). Hence, its salinity preference is taken as being close to 10 - 

>13 psμ. 

Lingulodinium machaerophorum is a rather ubiquitous species (Mertens et al., 

2009; Leroy et al., 2013b; Mudie et al., 2017). The other taxa found in the palynological 

studies (i.e. Caspidinium rugosum, C. rugosum rugosum and Pentapharsodinium dalei 

cyst) are mostly present in low abundances, and their salinity ranges are not very well 

defined but seem broad (Mudie et al., 2017). Concerning nutrients, only 
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Brigantedinium is heterotroph; the other species are autotroph, with L. 

machaerophorum being mixotroph (Mudie et al., 2017). 

The statistical analysis of the oceanographic parameters of dinocysts in 181 

modern samples in the Pontocaspian area (Mudie et al., 2017) shows that sea surface 

salinity, especially from January to March, is the main factor explaining dinocysts 

distribution. The second main factor is the sea surface temperature, especially from 

January to March when ice forms. A limitation of this modern dataset is the scarcity of 

sites with salinities <8 psμ, with the total absence of salinities <6 psμ. The Khvalynian 

highstand assemblages dominated by S. cruciformis and P. psilata, not only in the CS 

(Leroy et al., 2013c, 2014) but also in its equivalent in the Black Sea (Shumilovskikh 

et al., 2014), do not have modern analogues so far. 

Briefly, going any further with attributing fixed ranges of salinities to dinocysts 

is too speculative because: i) they have a great environmental plasticity, as many of 

them are Pontocaspian, ii) they often behave differently in the Pontocaspian area than 

in the rest of the world, and iii) some non-analogue situations to the modern surface 

samples existed in the past. 

Recognising the limitations of using specific dinocyst types as indicators of 

specific salinity ranges, we have separated the dinocyst assemblages presented here 

in three broad groups (Table 2) according to not only their distribution in surface 

samples of the Pontocapian (Kazancı et al., 2004; Marret et al., 2004; Leroy et al., 

2013a, 2013b; 2018; Mudie et al., 2017), but also to changes over time in sedimentary 

sequences (e.g. Dale, 1996; Sorrel et al., 2006; Leroy et al., 2007, 2013c; 2014; Mudie 

et al., 2007; Marret et al., 2009). The three groups separate the following 

assemblages: P. psilata-S. cruciformis-S. belerius (Group 1), I. caspienense (Group 

2) and L. machaerophorum and other taxa (Group 3) (Table 2). Group 1 would be 

indicative of fresher water environments in contraposition with Group 2, indicative of 

brackish waters. Group 3 includes the rest of the dinocysts. 

Table 2. The three dinocyst groups separated according to salinity preference. 

Group Taxa 

1 Pyxidinopsis psilata, Spiniferites cruciformis, Spiniferites belerius 

2 Impagidinium caspienense 

3 Lingulodinium machaerophorum with all others: Pentapharsodinium dalei cyst, 

Brigantedinium, Caspidinium rugosum, C. rugosum rugosum 

4. Results and interpretation of the new data 

4.1. Base of core GS18 

The additional 22 samples below 12.44 cal. ka BP in core GS18 show similar taxa to 

the already published upper part (Fig. SI1; Leroy et al., 2014) with the dominance of 

P. psilata. Wide changes within the assemblages are, however, noted with especially 

high percentages in Brigantedinium and low dinocyst concentrations at 13.9–12.9 cal. 

ka BP, coeval to the Allerød oscillation. 
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4.2. Core Sh7 

4.2.1. Lithology of core Sh7 

A fine brown mud with black hydrotroilite layers (0.5 cm thick) characterises core Sh7 

lithology from 600 to 423 cm, ending with a sharp transition. A fine oxidised mud with 

clear black hydrotroilite layers (2 cm thick) with a progressive transition at its top 

characterises the 423-310 cm interval. From 310 to 230 cm, a light brown mud with 

hydrotroilite layers is evidenced. From 230 cm to the top, the core lithology is 

distinguished by a fine grey mud, more bedded at 230–175 and 115-20 cm depth. The 

grain size distribution analysis indicates very fine-grained sediment with a slight 

increase of the fine silt fraction at 137.5 cm (Fig. 2). 

4.2.2. Zonation and interpretation of the Sh7 dinocyst record 

The zonation performed on the dinocyst record of core Sh7 has allowed identifying 

five dinocyst zones (D1 to D5; Fig. 3). Zone D1 (590-532 cm) is dominated by I. 

caspienense (40–50%), with a significant representation of P. psilata (30–40%). The 

high I. caspienense values suggest an increase of salinity and point at a lowstand, the 

Enotaev or perhaps the Atelian according to different authors (Svitoch, 2009; Yanina, 

2014). 

In zone D2 (532-385 cm), P. psilata dominates the assemblages (40–75%) 

followed by I. caspienense (10–20%). It has probably its equivalent in the first samples 

of core GS18 before 13.8 cal. ka BP (Fig. 2). 

In zone D3 (385-318 cm), P. psilata values drop (15–40%) and Brigantedinium 

percentages increase significantly (5–55%). A similar phase of high Brigantedinium 

percentages is found at 13.8–12.8 cal. ka BP in core GS18, coeval with the end of the 

Allerød period (Fig. 2). The milder climate of the Allerød would have led to the melting 

of regional glaciers and permafrost (likely in the Greater Caucasus, Fig. 1) and, thus, 

leading to a greater in-wash of very fine particles into the CS. It is proposed that the 

CS waters became more turbid, so, less favourable to autotrophic phytoplankton, 

supporting heterotrophic species such as Brigantedinium (García-Moreiras et al., 

2018). 

Zone D4 (318-127 cm) shows a noticeable drop in Brigantedinium percentages 

(0–25%), while the presence of P. psilata is maximal (up to 75%), except at 217-

208 cm due to a single peak of I. caspienense at 217 cm followed by a single peak of 

S. cruciformis at 208 cm. It is also at 208 cm that the dinocyst concentration clearly 

increases. Zone D4 is equivalent to zones d-1and d-2 of core GS18, with the single 

peak of I. caspienense possibly representing the Mangyshlak. 

Zone D5 (127–2.5 cm) is characterised by the disappearance of P. psilata, the 

quasi-disappearance of S. cruciformis, and the massive increase in Brigantedinium 

values (25–80%). I. caspienense retains similar values to the previous three zones. P. 

dalei cyst appears at the base of this zone, while L. machaerophorum at 42 cm. C. 

rugosum rugosum, that was previously present in low values, disappears. The main 

change in this diagram lies between zones D4 and D5 and it is the equivalent to the 

boundary of zones d-4 and d-5 of GS18. 
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Fig. 3. Dinocyst diagram of core Sh7. Black dots indicate percentages lower than 0.5%. 

Dinocyst percentages are calculated on the sum of identified cysts, excluding varia. The 

zonation was performed by CONISS analysis after the square-root transformation of dinocyst 

percentages. M = Mangyshlak. Al = Allerød. Roman numbers in blue are indicative of 

taphonomical change (tapho I to IV) identified for the total palynological (pollen and dinocyst) 

record (SI 3). Letters in yellow lozenges are tie points (more information in Table SI 3). 

4.2.3. Chronology of core Sh7 

The details on how the chronological framework of core Sh7 has been built are found 

in Supplementary Information (SI 3a,b). A detailed pollen diagram is presented in SI 

3a,b, as well as the explanation of the tie points deriving from it and from the dinocyst 

diagram. According to the tie points (Table SI3), 422 cm in depth would correspond to 

∼13.8 cal. ka BP, 200 cm to ∼11.5–11.1 cal. ka BP, and 57.5 cm to ∼3.5 cal. ka BP, 

with an identified sedimentary hiatus at 132 cm that would cover from ∼9.2–8.2 to 4.1 

cal. ka BP (Fig. 2). 

5. Discussion 

5.1. Salinity and water levels in the Caspian 

Modellers have shown that the main drivers of CS levels, besides precipitation, are 

evaporation over the lake surface and river inflow (Arpe et al., 2007, 2012, 2014). 

Water level changes are, therefore, directly affecting water volume and dilution and, 

hence, salinity. Moreover, during highstands, overflows over the Manych Sill in the 

west and to the Karabogaz Gol in the east must have deprived the CS of salts (Fig. 1; 

Leroy et al. in press). The link shown by biotic proxies between salinity, water volume 

and the water level is valid for the open water and clearly not for areas under delta 

influence (Leroy et al., 2018). Indeed, the dinocyst groups and their changes over time 

are especially significant for deep waters. For example, Group 1 is not important in the 

coastal lagoon (core TM) in the post-regression early Holocene (Leroy et al., 2013a), 

because water is shallow and easily influenced by river mouth conditions, thus often 

displaying different salinities than in the open waters, i.e. higher or lower. 

When cumulative diagrams are plotted displaying the three dinocyst groups 

considered in this work, the trends in Group 1 – that comprises dinocysts living at lower 

salinities – in comparison with the other two groups seem to indicate changes in water 

masses that could be construed as a qualitative indication of salinity trends (Fig. 4). 

5.2. Dinocyst records from Caspian deep cores and comparison to previous 

water level reconstructions 

The middle and south basin dinocyst records compiled here with dinocyst 

assemblages arranged in three groups by salinity preference reveal five main 

environmental changes and a significant assemblage turnover (Fig. 4). 

5.2.1. The Khvalynian highstand 

The dominance of Group 1 over Group 2 in the dinocyst assemblages reconstructs 

high water levels at the end of the Pleistocene (phase 1, Fig. 4), in line with a highstand 



14 

reconstructed by Varushchenko et al. (1987), Chepalyga (2007) and Svitoch (2009). 

This highstand has been related to the Khvalynian highstand. In addition, Group 1 also 

indicates that the salinity was low, as reconstructed by molluscs (Yanina, 2014). 

 

Fig. 4. Dinocyst-inferred environmental changes after the compilation of the synthetic dinocyst 

records from the deep-water cores of the south (cores GS05, CP14 and US02) and middle 

(cores GS18, CP18, and Sh7) basins presented as cumulative curves of three environmental 

groupings (Table 2). Circled numbers at the top refer to the five main environmental phases 

and the significant assemblage turnover described in the text. Radiocarbon dates are indicated 

with asterisks and radionuclides by a bar. 

5.2.2. The Mangyshlak lowstand 

A lowstand is reconstructed after the Khvalynian highstand, the so-called Mangyshlak 

(phase 2, Fig. 4). The chronology of this lowstand has been established at c. 11.5–

10.5 cal. ka BP in the middle basin (Leroy et al., 2014), and at >11.7–11.2 cal. ka BP 

in the south basin (Leroy et al., 2013c) (Fig. 4). The time-span of the lowstand is 

reconstructed as longer in the northern shallow part of the CS using lithological and 
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mollusc shells analyses, from 12 to 9 uncal. ka BP (Bezrodnykh and Sorokhin, 2016). 

In addition to the changing CS levels, the larger importance of Group 2 indicates 

salinities higher than during the Khvalynian in the middle and south basins as (Fig. 4). 

In fact, this change in salinity is not only seen in the dinocyst records but also in an 

increase in the carbonate content in cores GS05 and GS18 (Leroy et al., 2013c, 2014), 

as well as in mollusc-based salinity reconstructions (Yanina, 2014). It fits also the 

grain-size increase seen in multiple shallow and deep cores studied in the south and 

middle basins (e.g. Mayev, 2010). However, it is quite remarkable that in close-by 

deep-water cores (cores SR12, GS04 and GS19), no clear Mangyshlak lowstand was 

highlighted after sedimentological and mineralogical studies (Kuprin et al., 2003). 

5.2.3. The post-Mangyshlak highstand until 4 cal. ka BP 

After the Mangyshlak lowstand up to c. 8.5–8.0 cal. ka BP, CS levels rose as depicted 

by the rise in the importance of Group 1 in the dinocyst records of the middle and south 

basins (phase 3, Fig. 4). The reconstructed highstand seems to have had similar 

features to the preceding Khvalynian in the middle basin, or even higher CS levels in 

the south basin. Based on sedimentological and mollusc analyses, this highstand 

period is either already called the Neocaspian (e.g. Yanina, 2014) or still is the 

continuation of the Khvalynian highstand (e.g. Svitoch, 2009, 2012), although never 

as high as the Pleistocene Khvalynian. It is not impossible that this highstand may 

have been previously confused with the glacial part of the Khvalynian, perhaps due to 

similarities of sediment or mollusc assemblages. Dinocyst assemblages show low 

salinity levels like those detected during the pre-Mangyshlak Khvalynian. Therefore, 

the dinocyst data would agree with some mollusc data in extending the Khvalynian 

biozone to this period, as the salinity suggested for the Neocaspian is higher, thus 

reconstructing a period with different features than the Khvalynian ones (Svitoch, 

2009, 2012). 

A small but significant shift in the salinity gradient is reconstructed from c. 8.5–

8.0–4 cal. ka BP when comparing the dinocyst assemblages of the south and middle 

basins (phase 4, Fig. 4). After the Mangyshlak up to c. 8.5–8.0 cal. ka BP, the 

previously described phase, the freshwater is reconstructed flowing southwards, as 

today owing to the influence of the Volga River in the north. However, from such date 

and during four millennia, the water inflow seems to have reversed, as indicated by 

the larger importance of Group 1 in the south basin than in the middle basin. This 

means an unexpected-so-far south to middle basin water flow and the likely influence 

of rivers feeding the south basin. The turning point might have been the 8.2 cal. ka BP 

event that in the Caucasus meant a shift to wetter climate (Messager et al., 2013; 

Joannin et al., 2014). In addition to the wetter climate that existed in the Caucasus, 

several periods of low fluvial activity have been identified for the northern drainage of 

the CS, i.e. phase 6 from 8.5 to 5.5 ka b2k and phase 4 from 4.6 to 3.5 ka b2k (Panin 

and Matlakhova, 2015). These relative dry periods would have decreased the flow of 

the Volga, impacting first the north and middle basins, and later the south basin. 

With high levels in the CS, an overflow to the Black Sea is expected in this 

period, as it was the case for the Khvalynian highstand (Bahr et al., 2005). Hardly any 

trace of this is, however, known. Nevertheless, in the NE Black Sea (not far from the 
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Azov Sea where the Don-Manych passage ends), a Holocene record shows that 

Mediterranean ostracod and dinocyst taxa are still co-existing with Caspian taxa at 

7.4–6.8 cal. ka BP (Ivanova et al., 2015; Zenina et al., 2017). This may suggest a 

possible rather late inflow over the sill from the CS. 

5.2.4. The 4 cal. ka BP shift 

The sharpest change in the dinocyst assemblages is found at c. 4 cal. ka BP (phase 

5, Fig. 4). This shift meant an assemblage turnover depicting a change in salinity from 

less brackish to more brackish dinocysts owing to the decline in Group 1. More 

specifically this shift has been detected at 3.9 cal. ka BP in the south basin (Leroy et 

al., 2007) and at 4.1 cal. ka BP in the middle basin (Leroy et al., 2014). This deep-

water assemblage turnover, also seen in core Sh7 (Fig. 2, Fig. 3), reflects an 

ecological threshold synchronous in the two basins (Fig. 2, Fig. 4). 

No obvious shift or event corresponding to the major dino-assemblage turnover 

at c. 4 cal. ka BP (around 3.7 14C ka BP) has been observed in previous CS level 

reconstructions (Leroy et al. in press). Nevertheless, a deep lowstand (>45 m bsl) is 

proposed in Svitoch (2009) around 4.2 14C ka BP. The lack of proxy evidence for an 

abrupt water level change four thousand years ago from other CS level reconstructions 

is perhaps owing to the relative abruptness of the shift, the composite nature of the 

published reconstructions, and their limited chronological control (Leroy et al. in press). 

In core Sh7, the shift is expressed by an event causing the loss of underlying sediment 

(Fig. 2). The shift is coeval to a distinctive gypsum level in the lagoonal core TM related 

thus to the culmination of a significant local drop of the water level at 7.6 to 4 cal. ka 

BP (Leroy et al., 2013a; Kakroodi et al., 2015). Moreover, it is intriguing that in the 

fluvial activity reconstruction of the East European plain (i.e. Volga drainage basin), a 

period with low activity occurs at that point (fluvial phase 4 of Panin and Matlakhova, 

2015). A possible link with the 4.2 cal. ka BP drought event seen in the Iranian central 

Plateau (Schmidt et al., 2011) has been proposed and discussed earlier (Leroy et al., 

2014). 

5.2.5. The Neocaspian period 

Finally, from c. 4 cal. ka BP onwards the dinocyst records show larger importance of 

Group 2 in the assemblages (phase 6, Fig. 4). This period, that is not reconstructed 

as a highstand due to the low values of Group 1, but also seems to have been a 

lowstand owing to the large importance of Group 2, is the Neocaspian period. 

5.2.6. Other features of the dinocyst records 

There are some other features in the dinocyst records that are worth mentioning. 

Increases of Brigantedinium in the Allerød in cores GS18 and Sh7 (middle basin), and 

some later ones (Fig. SI 1), are probably nutrient-driven owing to the ecology of this 

dinocyst (García-Moreiras et al., 2018). So far, no clear evidence of an increase in 

water surface temperature can be seen in the dinocyst assemblages apart from the 

recent expansion of L. machaeorophorum (Leroy et al., 2013b), although water 

surface temperature is likely to have played a considerable role since the LGM. The 

progressive increase in biological carbonate content typical of the Mangyshlak 
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lowstand could reflect this temperature increase by allowing plankton to bloom more 

readily (Mayev, 2010; Leroy et al., 2013c). 

Most of the CS level reconstructions are from shallow facies and many show 

more fluctuations than the dinocyst reconstruction. It is very likely that the simpler 

scheme of water level presented here in comparison to the more complex previous 

reconstructions based on sedimentology and mollusc assemblages (e.g. Svitoch, 

2012) is caused by a buffering due to the water depth and the distance to the shores. 

It is most likely that only the largest water level fluctuations are recorded in the deep 

basins. Alternatively, the previously reconstructions made using the data from many 

different locations are not stacked together in a clean chronological succession. 

Moreover, most of the sites used to build the available water-level reconstructions 

derive from coastal locations where regression or transgression might have been felt 

earlier or later than in deep locations. A good example of this is the Mangyshlak 

duration of c. 1000 years in the deep cores from the south and middle basins (Fig. 4) 

versus several-millennia-long lowstand in cores located closer to the north basin 

margin (Bezrodnykh and Sorokhin, 2016). 

5.3. NS salinity gradient between the Caspian Sea basins 

An interesting feature appears when comparing the dinocyst records from the middle 

and south basins (Fig. 4). Most of the reconstructed salinities (phases 1, 2, 3 and 6) 

reflect a southwards flow, meaning an increase in salinity from north to south. This 

feature is in line with the current hydrological status of the CS, in which the southwards 

flow is the result of the prominence of Volga River discharge in the north basin. 

However, the typical southwards flow seems to have shifted from 8.5 to 8.0 to c. 4 cal. 

ka BP (phase 4), when a northwards flow is reconstructed from the south to the middle 

basin (Fig. 4). This four-millennia-long shift could be due to lower evaporation in the 

south basin or, most likely, owing to a change in the hydrography. 

Long-term changes in the hydrography have already been suggested for the 

CS. The meridional flow direction seems to have changed several times in the past as 

shown by the study of bottom sediments in the Apsheron Sill (Fig. 1) between the 

middle and the south basin (Ferronsky et al., 1999). Moreover, the fresh morphology 

of the trench and the sediment structure in cores taken in the sill itself support periods 

of changing flow direction between basins (Kuprin, 2002). These two investigations 

have indicated that, on several occasions, a significant freshwater inflow came from 

the melting of southern highland glaciers. Unfortunately, the timeframes of the 

changes in flow direction remained undated. 

5.4. Freshwater sources 

The fluvial activity in the East European Plain, including the Volga River, is 

reconstructed as very strong during the late Pleistocene, from 18 to 11.7 ka b2k. In 

comparison, the Holocene experienced a much lower fluvial activity (Panin and 

Matlakhova, 2015). Moreover, the Eurasian ice sheet had already withdrawn from the 

Volga drainage basin by 13.8 cal. ka BP (Tudryn et al., 2016). 

According to the long-term dinocyst records, it seems that for most of the last 

fourteen millennia the water flowed from the middle to the south basin indicating an 
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influence from the Volga River freshwater discharge, as it happens nowadays. 

However, the water flow for the 8.5–8.0–4 cal. ka BP interval (phase 4, Fig. 4) is 

reconstructed as reversed from the southward general pattern, indicating an additional 

and voluminous inflow of freshwater from the south basin. Two lines of thoughts are 

discussed to explain the source of fresh water: on the one hand the climate in the 

Karakum desert (Turkmenistan), i.e. the area between the CS and the Amu-Darya 

(Fig. 1), and on the other hand the flow of the Amu-Darya River. In sum, pluvial and 

fluvial explanations. 

5.4.1. The early and mid-Holocene climate in the Karakum 

The pollen assemblages trapped in deep-water sediments are overrepresented by 

pollen types wind-transported over long distances, thus reflecting part of the drainage 

basin of the CS. The drainage basin area better represented is likely to be the 

westwards of it owing to dominant winds at the time of peak pollen production (Leroy 

et al., 2007). The climate at the Holocene onset is reconstructed as very dry around 

the CS according to pollen records from the middle and south basins (Leroy et al., 

2013c, 2014). The development of a long phase whose vegetation was characterised 

by steppic bushes is noted at c. 11.5–8.4 cal. ka BP in the south basin, and at c. 11.4–

8.2 cal. ka BP in the middle basin, with the tree expansion that usually characterises 

the Holocene onset starting progressively after 8.4–8.2 cal. ka BP only (Leroy et al., 

2013c, 2014). Therefore, it is only from c. 8.4–8.2 cal. ka BP that the climate around 

the middle and south CS basins became slightly more humid. 

This observation fits rather well with a “pluvial” phase, the Liavliakan phase, 

reconstructed for the south-eastern Caspian area at c. 8.8–4.5 cal. ka BP (published 

as 8 to 4 14C ka BP), peaking at c. 7.5 cal. ka BP (published as 6.5 14C ka BP) in the 

Karakum desert (mainly Turkmenistan, Fig. 1) (Lioubimtseva et al., 1998). This more 

humid period had been suggested also in previous palaeoenvironmental studies in the 

nearby Aral Sea (Breckle and Geldyeva, 2012). In addition, archaeological research 

and dune geomorphology evidence indicate that Turkmenistan and central Asia were 

wetter for a few thousand years before c. 5.5–4.5 cal. ka BP (published as 5 or 4 14C 

ka BP) (Kes and Klyukanova, 1990; Lioubimtseva et al., 1998; Maman et al., 2011). 

Around 4000 years ago, populations living at the foot of the Kopet-Dag, at the south-

eastern of the CS (Fig. 1), left the area. This migration was likely the result of the 

decrease in the mountainous river flow, forcing the populations to live in the plain in 

the large deltas, such as in the Murghab Delta (Masson, 1992). 

5.4.2. The flow of the Amu-Darya and distant influence from the Himalayas 

Ferronsky et al. (1999) have suggested that the source of water for this reversed 

salinity gradient is in the glaciers from southern slopes of the drainage basin. The 

freshwater would be most likely coming from the Amu-Darya via the now-defunct 

Uzboy River, a distributary of the Amu-Darya (Leroy et al., 2007). Therefore, the 

freshwater would derive from the Pamir and Hindu-Kush regions (Fig. 1). However, no 

direct evidence has been found for that source. 

In geological and historical times, the Uzboy acted as the lower reaches of the 

Amu-Darya. In fact, it even seems that the most common flow of the Amu-Darya over 
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the last million years has been to the CS rather than to the Aral Sea (Létolle, 2000). 

The Amu-Darya was then located further SW and was following the foothill of the 

Kopet-Dag (Létolle, 2000). In the Pliocene, a large delta formed at its mouth in the 

eastern part of the south basin (Torres, 2007). In the Quaternary, the Uzboy and Amu-

Darya often drained in the CS (Kes and Klyukanova, 1990; Ferronsky et al., 1999; 

Létolle, 2000). However, in the late Quaternary, the Amu-Darya was increasingly 

deviated towards the Aral Sea due to tectonic movements (Létolle, 2000; 

Hollingsworth et al., 2010). From the Holocene onset to c. 5.8 cal. ka BP (published 

as c. 5 14C ka BP), the Amu-Darya was either directly flowing to the CS via the Uzboy 

and/or the Sarykamish (a lake between the Aral and the CS), or it was so powerful 

during The Great Aral Phase that the Aral Sea waters flew over to the CS still via the 

Uzboy and Sarykamish (Boomer et al., 2000; Breckle and Geldyeva, 2012). These 

authors justify the large water volume for that period as derived from the Liavliakan 

pluvial period causing an increased river flow in the Amu-Darya and Syr-Darya. In the 

late Holocene, it is known from historical accounts that people were able to destroy 

irrigation dams on the Amu-Darya, e.g. in the region of Urgench, to turn its flow to the 

CS (Kes and Klyukanova, 1990; Naderi Beni et al., 2013; Krivonogov et al., 2014; 

Haghani et al., 2016). 

Therefore, it is very likely that the Amu-Darya flew in the CS from c. 8.5 to 4 cal. 

ka BP, partially fed by i) the Liavliakan humid period, and ii) by waters coming from an 

area with a climatic regime completely different from the regime over the Volga 

drainage basin (Fig. 1). Hydrographers have shown that a positive correlation exists 

between the modern flow of the Amu-Darya and peaks of the Indian Summer Monsoon 

(Schiemann et al., 2007). This is currently via an increase of glacier melting due to 

temperature rise, not by direct increase of monsoonal precipitation. However, the early 

Holocene situation was different, as the Indian Summer Monsoon was stronger 

(Wanner et al., 2008; Owen, 2009) and hence might have overflown into the Amu-

Darya drainage basin. In parallel, the Indian Summer Monsoon decreased around the 

4.2 cal. ka BP event (Staubwasser and Weiss, 2006), and this may have caused a 

decrease in the flow of the Amu-Darya via a direct decrease in precipitation on its 

headwaters or via a decrease of the glacier melting in its headwaters (Schiemann et 

al., 2007). 

Finally, the change of the Amu-Darya flow to the Aral Sea after the c. 8.5–4 cal. 

ka BP interval is likely due to the local climate in the Karakum and climate upstream 

where the glaciers are located. The deviation of the Amu-Darya from the CS to the 

Aral Sea may have been caused by i) shifting sand dunes in the Karakum desert 

(where the Amu-Darya turns west to the CS) that are frequent and whose activity could 

easily have been intensified by the 4.2 cal. ka BP event with its 300 year long drought 

(Kaniewski et al., 2018); and ii) one of the many tectonic movements in the Amu-Darya 

lower basin (Hollingsworth et al., 2010; Crétaux et al., 2013). 

6. Conclusions 

The long-term dinocyst records from three deep-water sedimentary sequences 

located in the middle and south CS basin have revealed 1) an early Holocene lowstand 
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(Mangyshlak), 2) high water levels in the first half of the Holocene, just after the 

Mangyshlak lowstand, and 3) a dinocyst assemblage turnover at 4 cal. ka BP. 

In addition, disrupting the southwards surface water flow that characterises the 

CS nowadays and most of the last fourteen millennia, a reversed surface water flow 

(northwards) is reconstructed during the second half of the post-Mangyshlak 

highstand, from 8.5 to 8.0 to 4 cal. ka BP. This reversed water flow should be linked 

to a southern source of water. The southern source of water is most likely explained 

by a more humid climate in the Karakum and a strong outflow of the Amu-Darya, 

pointing at the Amu-Darya bringing meltwaters from the Indu-Kush and Pamir to the 

CS. 

Still, other proxies remain to be explored that would aid to solve the water-level 

conundrum and suit the idiosyncrasies of the CS, the largest inland water body. This 

would help to identify the precise source of water during the Holocene. In this respect, 

neodymium (Tudryn et al., 2016) and strontium (Pierret et al., 2012) isotopes seem 

promising. 

Finally, regarding the factors driving the CS level, we agree with Kes and 

Klyukanova (1990) that the role of rivers is vastly underestimated in the Pontocaspian 

region. 
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