24,237 research outputs found

    Emergent SU(N) symmetry in disordered SO(N) spin chains

    Full text link
    Strongly disordered spin chains invariant under the SO(N) group are shown to display random-singlet phases with emergent SU(N) symmetry without fine tuning. The phases with emergent SU(N) symmetry are of two kinds: one has a ground state formed of randomly distributed singlets of strongly bound pairs of SO(N) spins (a `mesonic' phase), while the other has a ground state composed of singlets made out of strongly bound integer multiples of N SO(N) spins (a `baryonic' phase). The established mechanism is general and we put forward the cases of N=2,3,4\mathrm{N}=2,3,4 and 66 as prime candidates for experimental realizations in material compounds and cold-atoms systems. We display universal temperature scaling and critical exponents for susceptibilities distinguishing these phases and characterizing the enlarging of the microscopic symmetries at low energies.Comment: 5 pages, 2 figures, Contribution to the Topical Issue "Recent Advances in the Theory of Disordered Systems", edited by Ferenc Igl\'oi and Heiko Riege

    Highly-symmetric random one-dimensional spin models

    Get PDF
    The interplay of disorder and interactions is a challenging topic of condensed matter physics, where correlations are crucial and exotic phases develop. In one spatial dimension, a particularly successful method to analyze such problems is the strong-disorder renormalization group (SDRG). This method, which is asymptotically exact in the limit of large disorder, has been successfully employed in the study of several phases of random magnetic chains. Here we develop an SDRG scheme capable to provide in-depth information on a large class of strongly disordered one-dimensional magnetic chains with a global invariance under a generic continuous group. Our methodology can be applied to any Lie-algebra valued spin Hamiltonian, in any representation. As examples, we focus on the physically relevant cases of SO(N) and Sp(N) magnetism, showing the existence of different randomness-dominated phases. These phases display emergent SU(N) symmetry at low energies and fall in two distinct classes, with meson-like or baryon-like characteristics. Our methodology is here explained in detail and helps to shed light on a general mechanism for symmetry emergence in disordered systems.Comment: 26 pages, 12 figure

    Vanishing Viscosity Limits and Boundary Layers for Circularly Symmetric 2D Flows

    Full text link
    We continue the work of Lopes Filho, Mazzucato and Nussenzveig Lopes [LMN], on the vanishing viscosity limit of circularly symmetric viscous flow in a disk with rotating boundary, shown there to converge to the inviscid limit in L2L^2-norm as long as the prescribed angular velocity α(t)\alpha(t) of the boundary has bounded total variation. Here we establish convergence in stronger L2L^2 and LpL^p-Sobolev spaces, allow for more singular angular velocities α\alpha, and address the issue of analyzing the behavior of the boundary layer. This includes an analysis of concentration of vorticity in the vanishing viscosity limit. We also consider such flows on an annulus, whose two boundary components rotate independently. [LMN] Lopes Filho, M. C., Mazzucato, A. L. and Nussenzveig Lopes, H. J., Vanishing viscosity limit for incompressible flow inside a rotating circle, preprint 2006

    PCV32 BUDGET IMPACT ANALYSIS OF PACLITAXEL DRUG ELUTING STENT (DES) FOR THE TREATMENT OF LOWER LIMB PERIPHERAL ARTERIAL DISEASE (PAD) IN FRANCE

    Get PDF

    Developing a site-conditions map for seismic hazard Assessment in Portugal

    Get PDF
    The evaluation of site effects on a broad scale is a critical issue for seismic hazard and risk assessment, land use planning and emergency planning. As characterization of site conditions based on the shear-wave velocity has become increasingly important, several methods have been proposed in the literature to estimate its average over the first thirty meters (Vs30) from more extensively available data. These methods include correlations with geologic-geographic defined units and topographic slope. In this paper we present the first steps towards the development of a site–conditions map for Portugal, based on a regional database of shear-wave velocity data, together with geological, geographic, and lithological information. We computed Vs30 for each database site and classified it according to the corresponding geological-lithological information using maps at the smallest scale available (usually 1:50000). We evaluated the consistency of Vs30 values within generalized-geological classes, and assessed the performance of expedient methodologies proposed in the literature

    Experimental determination of the non-extensive entropic parameter qq

    Full text link
    We show how to extract the qq parameter from experimental data, considering an inhomogeneous magnetic system composed by many Maxwell-Boltzmann homogeneous parts, which after integration over the whole system recover the Tsallis non-extensivity. Analyzing the cluster distribution of La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} manganite, obtained through scanning tunnelling spectroscopy, we measure the qq parameter and predict the bulk magnetization with good accuracy. The connection between the Griffiths phase and non-extensivity is also considered. We conclude that the entropic parameter embodies information about the dynamics, the key role to describe complex systems.Comment: Submitted to Phys. Rev. Let

    Eigenfunctions of the Laplacian and associated Ruelle operator

    Full text link
    Let Γ\Gamma be a co-compact Fuchsian group of isometries on the Poincar\'e disk \DD and Δ\Delta the corresponding hyperbolic Laplace operator. Any smooth eigenfunction ff of Δ\Delta, equivariant by Γ\Gamma with real eigenvalue λ=s(1s)\lambda=-s(1-s), where s=1/2+its={1/2}+ it, admits an integral representation by a distribution \dd_{f,s} (the Helgason distribution) which is equivariant by Γ\Gamma and supported at infinity \partial\DD=\SS^1. The geodesic flow on the compact surface \DD/\Gamma is conjugate to a suspension over a natural extension of a piecewise analytic map T:\SS^1\to\SS^1, the so-called Bowen-Series transformation. Let s\ll_s be the complex Ruelle transfer operator associated to the jacobian slnT-s\ln |T'|. M. Pollicott showed that \dd_{f,s} is an eigenfunction of the dual operator s\ll_s^* for the eigenvalue 1. Here we show the existence of a (nonzero) piecewise real analytic eigenfunction ψf,s\psi_{f,s} of s\ll_s for the eigenvalue 1, given by an integral formula \psi_{f,s} (\xi)=\int \frac{J(\xi,\eta)}{|\xi-\eta|^{2s}} \dd_{f,s} (d\eta), \noindent where J(ξ,η)J(\xi,\eta) is a {0,1}\{0,1\}-valued piecewise constant function whose definition depends upon the geometry of the Dirichlet fundamental domain representing the surface \DD/\Gamma

    A neuronal network model of interictal and recurrent ictal activity

    Get PDF
    We propose a neuronal network model which undergoes a saddle-node bifurcation on an invariant circle as the mechanism of the transition from the interictal to the ictal (seizure) state. In the vicinity of this transition, the model captures important dynamical features of both interictal and ictal states. We study the nature of interictal spikes and early warnings of the transition predicted by this model. We further demonstrate that recurrent seizures emerge due to the interaction between two networks.Comment: 9 pages, 7 figure
    corecore