21,417 research outputs found

    A Comment on Quantum Distribution Functions and the OSV Conjecture

    Get PDF
    Using the attractor mechanism and the relation between the quantization of H3(M)H^{3}(M) and topological strings on a Calabi Yau threefold MM we define a map from BPS black holes into coherent states. This map allows us to represent the Bekenstein-Hawking-Wald entropy as a quantum distribution function on the phase space H3(M)H^{3}(M). This distribution function is a mixed Husimi/anti-Husimi distribution corresponding to the different normal ordering prescriptions for the string coupling and deviations of the complex structure moduli. From the integral representation of this distribution function in terms of the Wigner distribution we recover the Ooguri-Strominger-Vafa (OSV) conjecture in the region "at infinity" of the complex structure moduli space. The physical meaning of the OSV corrections are briefly discussed in this limit.Comment: 27 pages. v2:reference and footnote adde

    Dyon Spectrum in CHL Models

    Get PDF
    We propose a formula for the degeneracy of quarter BPS dyons in a class of CHL models. The formula uses a modular form of a subgroup of the genus two modular group Sp(2,Z). Our proposal is S-duality invariant and reproduces correctly the entropy of a dyonic black hole to first non-leading order for large values of the charges.Comment: LaTeX file, 38 pages, minor changes in section 3.3(v2), minor changes in introduction, appendix A and C(v3

    On the canonical map of surfaces with q>=6

    Full text link
    We carry out an analysis of the canonical system of a minimal complex surface of general type with irregularity q>0. Using this analysis we are able to sharpen in the case q>0 the well known Castelnuovo inequality K^2>=3p_g+q-7. Then we turn to the study of surfaces with p_g=2q-3 and no fibration onto a curve of genus >1. We prove that for q>=6 the canonical map is birational. Combining this result with the analysis of the canonical system, we also prove the inequality: K^2>=7\chi+2. This improves an earlier result of the first and second author [M.Mendes Lopes and R.Pardini, On surfaces with p_g=2q-3, Adv. in Geom. 10 (3) (2010), 549-555].Comment: Dedicated to Fabrizio Catanese on the occasion of his 60th birthday. To appear in the special issue of Science of China Ser.A: Mathematics dedicated to him. V2:some typos have been correcte

    Black hole entropy functions and attractor equations

    Get PDF
    The entropy and the attractor equations for static extremal black hole solutions follow from a variational principle based on an entropy function. In the general case such an entropy function can be derived from the reduced action evaluated in a near-horizon geometry. BPS black holes constitute special solutions of this variational principle, but they can also be derived directly from a different entropy function based on supersymmetry enhancement at the horizon. Both functions are consistent with electric/magnetic duality and for BPS black holes their corresponding OSV-type integrals give identical results at the semi-classical level. We clarify the relation between the two entropy functions and the corresponding attractor equations for N=2 supergravity theories with higher-derivative couplings in four space-time dimensions. We discuss how non-holomorphic corrections will modify these entropy functions.Comment: 21 pages,LaTeX,minor change

    Tests of Bayesian Model Selection Techniques for Gravitational Wave Astronomy

    Full text link
    The analysis of gravitational wave data involves many model selection problems. The most important example is the detection problem of selecting between the data being consistent with instrument noise alone, or instrument noise and a gravitational wave signal. The analysis of data from ground based gravitational wave detectors is mostly conducted using classical statistics, and methods such as the Neyman-Pearson criteria are used for model selection. Future space based detectors, such as the \emph{Laser Interferometer Space Antenna} (LISA), are expected to produced rich data streams containing the signals from many millions of sources. Determining the number of sources that are resolvable, and the most appropriate description of each source poses a challenging model selection problem that may best be addressed in a Bayesian framework. An important class of LISA sources are the millions of low-mass binary systems within our own galaxy, tens of thousands of which will be detectable. Not only are the number of sources unknown, but so are the number of parameters required to model the waveforms. For example, a significant subset of the resolvable galactic binaries will exhibit orbital frequency evolution, while a smaller number will have measurable eccentricity. In the Bayesian approach to model selection one needs to compute the Bayes factor between competing models. Here we explore various methods for computing Bayes factors in the context of determining which galactic binaries have measurable frequency evolution. The methods explored include a Reverse Jump Markov Chain Monte Carlo (RJMCMC) algorithm, Savage-Dickie density ratios, the Schwarz-Bayes Information Criterion (BIC), and the Laplace approximation to the model evidence. We find good agreement between all of the approaches.Comment: 11 pages, 6 figure

    Violation of the Cauchy-Schwarz inequality with matter waves

    Get PDF
    The Cauchy-Schwarz (CS) inequality -- one of the most widely used and important inequalities in mathematics -- can be formulated as an upper bound to the strength of correlations between classically fluctuating quantities. Quantum mechanical correlations can, however, exceed classical bounds.Here we realize four-wave mixing of atomic matter waves using colliding Bose-Einstein condensates, and demonstrate the violation of a multimode CS inequality for atom number correlations in opposite zones of the collision halo. The correlated atoms have large spatial separations and therefore open new opportunities for extending fundamental quantum-nonlocality tests to ensembles of massive particles.Comment: Final published version (with minor changes). 5 pages, 3 figures, plus Supplementary Materia

    Estudo da estrutura física do grão do milho por meio de marcadores RFLP e RAPD.

    Get PDF
    xSuplemento. Edição dos resumos do 43º Congresso Nacional de Genética
    corecore