21,267 research outputs found

    Analytical study of tunneling times in flat histogram Monte Carlo

    Full text link
    We present a model for the dynamics in energy space of multicanonical simulation methods that lends itself to a rather complete analytic characterization. The dynamics is completely determined by the density of states. In the \pm J 2D spin glass the transitions between the ground state level and the first excited one control the long time dynamics. We are able to calculate the distribution of tunneling times and relate it to the equilibration time of a starting probability distribution. In this model, and possibly in any model in which entering and exiting regions with low density of states are the slowest processes in the simulations, tunneling time can be much larger (by a factor of O(N)) than the equilibration time of the probability distribution. We find that these features also hold for the energy projection of single spin flip dynamics.Comment: 7 pages, 4 figures, published in Europhysics Letters (2005

    The world-sheet corrections to dyons in the Heterotic theory

    Full text link
    All the linear alpha-prime corrections, however excluding the gravitational Chern-Simons correction, are studied in the toroidally compactified critical Heterotic string theory. These corrections are computed to the entropy for a BPS static spherical four dimensional dyonic black hole which represents a wrapped fundamental string carrying arbitrary winding and momentum charges along one cycle in the presence of KK-monopole and H-monopole charges associated to another cycle. It is verified that after the inclusion of the gravitational Chern-Simons corrections [hep-th/0608182], all the linear alpha-prime corrections to the entropy for the supersymmetric dyon can be reproduced by the inclusion of only the Gauss-Bonnet Lagrangian to the supergravity approximation of the induced Lagrangian.Comment: JHEP style, 17 Pages; v2: a typo corrected ; v3: The coupling of the gravitational Chern-Simons terms to the three form field strength taken into account. The conclusion correcte

    Non-parametric comparison of histogrammed two-dimensional data distributions using the Energy Test

    Get PDF
    When monitoring complex experiments, comparison is often made between regularly acquired histograms of data and reference histograms which represent the ideal state of the equipment. With the larger HEP experiments now ramping up, there is a need for automation of this task since the volume of comparisons could overwhelm human operators. However, the two-dimensional histogram comparison tools available in ROOT have been noted in the past to exhibit shortcomings. We discuss a newer comparison test for two-dimensional histograms, based on the Energy Test of Aslan and Zech, which provides more conclusive discrimination between histograms of data coming from different distributions than methods provided in a recent ROOT release.The Science and Technology Facilities Council, U

    Avaliação de doenças da mangueira.

    Get PDF
    A região semi-árida do Vale do Submédio São Francisco é responsável por mais de 90% do volume de manga exportado pelo Brasil. esta região a produtividade é elevada devido a características climáticas favoráveis e ao manejo fitotécnico intenso. No entanto, a intensificação do cultivo e algumas práticas de manejo vêm gerando ou agravando problemas fitossanitários, com conseqüente aumento de perdas de produção. As doenças que ocorrem na mangueira resultam em perdas quantitativas, ou seja, menor número de frutos formado, mas principalmente perdas qualitativas (redução no tamanho e apodrecimento de frutos). Este tipo de perda pode prejudicar o trânsito internacional da manga desta região.bitstream/item/133830/1/ID-31564.pdfApostila distribuida aos participantes do Curso de Avaliação de Doenças da Mangueira, Petrolina, maio 2005

    Entropy Maximization in the Presence of Higher-Curvature Interactions

    Full text link
    Within the context of the entropic principle, we consider the entropy of supersymmetric black holes in N=2 supergravity theories in four dimensions with higher-curvature interactions, and we discuss its maximization at points in moduli space at which an excess of hypermultiplets becomes massless. We find that the gravitational coupling function F^(1) enhances the maximization at these points in moduli space. In principle, this enhancement may be modified by the contribution from higher F^(g)-couplings. We show that this is indeed the case for the resolved conifold by resorting to the non-perturbative expression for the topological free energy.Comment: 22 pages, 8 figures, AMS-LaTe

    Black hole entropy functions and attractor equations

    Get PDF
    The entropy and the attractor equations for static extremal black hole solutions follow from a variational principle based on an entropy function. In the general case such an entropy function can be derived from the reduced action evaluated in a near-horizon geometry. BPS black holes constitute special solutions of this variational principle, but they can also be derived directly from a different entropy function based on supersymmetry enhancement at the horizon. Both functions are consistent with electric/magnetic duality and for BPS black holes their corresponding OSV-type integrals give identical results at the semi-classical level. We clarify the relation between the two entropy functions and the corresponding attractor equations for N=2 supergravity theories with higher-derivative couplings in four space-time dimensions. We discuss how non-holomorphic corrections will modify these entropy functions.Comment: 21 pages,LaTeX,minor change

    Tests of Bayesian Model Selection Techniques for Gravitational Wave Astronomy

    Full text link
    The analysis of gravitational wave data involves many model selection problems. The most important example is the detection problem of selecting between the data being consistent with instrument noise alone, or instrument noise and a gravitational wave signal. The analysis of data from ground based gravitational wave detectors is mostly conducted using classical statistics, and methods such as the Neyman-Pearson criteria are used for model selection. Future space based detectors, such as the \emph{Laser Interferometer Space Antenna} (LISA), are expected to produced rich data streams containing the signals from many millions of sources. Determining the number of sources that are resolvable, and the most appropriate description of each source poses a challenging model selection problem that may best be addressed in a Bayesian framework. An important class of LISA sources are the millions of low-mass binary systems within our own galaxy, tens of thousands of which will be detectable. Not only are the number of sources unknown, but so are the number of parameters required to model the waveforms. For example, a significant subset of the resolvable galactic binaries will exhibit orbital frequency evolution, while a smaller number will have measurable eccentricity. In the Bayesian approach to model selection one needs to compute the Bayes factor between competing models. Here we explore various methods for computing Bayes factors in the context of determining which galactic binaries have measurable frequency evolution. The methods explored include a Reverse Jump Markov Chain Monte Carlo (RJMCMC) algorithm, Savage-Dickie density ratios, the Schwarz-Bayes Information Criterion (BIC), and the Laplace approximation to the model evidence. We find good agreement between all of the approaches.Comment: 11 pages, 6 figure
    corecore