1,801 research outputs found
Dynamical decoherence of the light induced interlayer coupling in YBaCuO
Optical excitation of apical oxygen vibrations in
YBaCuO has been shown to enhance its c-axis
superconducting-phase rigidity, as evidenced by a transient blue shift of the
equilibrium inter-bilayer Josephson plasma resonance. Surprisingly, a transient
c-axis plasma mode could also be induced above T by the same apical
oxygen excitation, suggesting light activated superfluid tunneling throughout
the pseudogap phase of YBaCuO. However, despite the
similarities between the above T transient plasma mode and the
equilibrium Josephson plasmon, alternative explanations involving high mobility
quasiparticle transport should be considered. Here, we report an extensive
study of the relaxation of the light-induced plasmon into the equilibrium
incoherent phase. These new experiments allow for a critical assessment of the
nature of this mode. We determine that the transient plasma relaxes through a
collapse of its coherence length rather than its carrier (or superfluid)
density. These observations are not easily reconciled with quasiparticle
interlayer transport, and rather support transient superfluid tunneling as the
origin of the light-induced interlayer coupling in
YBaCuO.Comment: 27 pages (17 pages main text, 10 pages supplementary), 5 figures
(main text
Pump frequency resonances for light-induced incipient superconductivity in YBaCuO
Optical excitation in the cuprates has been shown to induce transient
superconducting correlations above the thermodynamic transition temperature,
, as evidenced by the terahertz frequency optical properties in the
non-equilibrium state. In YBaCuO this phenomenon has so far
been associated with the nonlinear excitation of certain lattice modes and the
creation of new crystal structures. In other compounds, like
LaBaCuO, similar effects were reported also for excitation at
near infrared frequencies, and were interpreted as a signature of the melting
of competing orders. However, to date it has not been possible to
systematically tune the pump frequency widely in any one compound, to
comprehensively compare the frequency dependent photo-susceptibility for this
phenomenon. Here, we make use of a newly developed optical parametric
amplifier, which generates widely tunable high intensity femtosecond pulses, to
excite YBaCuO throughout the entire optical spectrum (3 - 750
THz). In the far-infrared region (3 - 25 THz), signatures of non-equilibrium
superconductivity are induced only for excitation of the 16.4 THz and 19.2 THz
vibrational modes that drive -axis apical oxygen atomic positions. For
higher driving frequencies (25 - 750 THz), a second resonance is observed
around the charge transfer band edge at ~350 THz. These observations highlight
the importance of coupling to the electronic structure of the CuO planes,
either mediated by a phonon or by charge transfer.Comment: 47 pages, 21 figures, 2 table
Functional Relaxation and Guided Imagery as Complementary Therapy in Asthma: A Randomized Controlled Clinical Trial
Background: Asthma is a frequently disabling and almost invariably distressing disease that has a high overall prevalence. Although relaxation techniques and hypnotherapeutic interventions have proven their effectiveness in numerous trials, relaxation therapies are still not recommended in treatment guidelines due to a lack of methodological quality in many of the trials. Therefore, this study aims to investigate the efficacy of the brief relaxation technique of functional relaxation (FR) and guided imagery (GI) in adult asthmatics in a randomized controlled trial. Methods: 64 patients with extrinsic bronchial asthma were treated over a 4-week period and assessed at baseline, after treatment and after 4 months, for follow-up. 16 patients completed FR, 14 GI, 15 both FR and GI (FR/GI) and 13 received a placebo relaxation technique as the control intervention (CI). The forced expiratory volume in the first second (FEV 1) as well as the specific airway resistance (sR(aw)) were employed as primary outcome measures. Results: Participation in FR, GI and FR/GI led to increases in FEV 1 (% predicted) of 7.6 +/- 13.2, 3.3 +/- 9.8, and 8.3 +/- 21.0, respectively, as compared to -1.8 +/- 11.1 in the CI group at the end of the therapy. After follow-up, the increases in FEV 1 were 6.9 +/- 10.3 in the FR group, 4.4 +/- 7.3 in the GI and 4.5 +/- 8.1 in the FR/GI, compared to -2.8 +/- 9.2 in the CI. Improvements in sR(aw) (% predicted) were in keeping with the changes in FEV 1 in all groups. Conclusions: Our study confirms a positive effect of FR on respiratory parameters and suggests a clinically relevant long-term benefit from FR as a nonpharmacological and complementary therapy treatment option. Copyright (C) 2009 S. Karger AG, Base
High magnetic field studies of the Vortex Lattice structure in YBa2Cu3O7
We report on small angle neutron scattering measurements of the vortex
lattice in twin-free YBa2Cu3O7, extending the previously investigated maximum
field of 11~T up to 16.7~T with the field applied parallel to the c axis. This
is the first microscopic study of vortex matter in this region of the
superconducting phase. We find the high field VL displays a rhombic structure,
with a field-dependent coordination that passes through a square configuration,
and which does not lock-in to a field-independent structure. The VL pinning
reduces with increasing temperature, but is seen to affect the VL correlation
length even above the irreversibility temperature of the lattice structure. At
high field and temperature we observe a melting transition, which appears to be
first order, with no detectable signal from a vortex liquid above the
transition
Superconducting Superstructure for the TESLA Collider
We discuss the new layout of a cavity chain (superstructure) allowing, we
hope, significant cost reduction of the RF system of both linacs of the TESLA
linear collider. The proposed scheme increases the fill factor and thus makes
an effective gradient of an accelerator higher. We present mainly computations
we have performed up to now and which encouraged us to order the copper model
of the scheme, still keeping in mind that experiments with a beam will be
necessary to prove if the proposed solution can be used for the acceleration.Comment: 11 page
Similar zone-center gaps in the low-energy spin-wave spectra of NaFeAs and BaFe2As2
We report results of inelastic-neutron-scattering measurements of low-energy
spin-wave excitations in two structurally distinct families of iron-pnictide
parent compounds: Na(1-{\delta})FeAs and BaFe2As2. Despite their very different
values of the ordered magnetic moment and N\'eel temperatures, T_N, in the
antiferromagnetic state both compounds exhibit similar spin gaps of the order
of 10 meV at the magnetic Brillouin-zone center. The gap opens sharply below
T_N, with no signatures of a precursor gap at temperatures between the
orthorhombic and magnetic phase transitions in Na(1-{\delta})FeAs. We also find
a relatively weak dispersion of the spin-wave gap in BaFe2As2 along the
out-of-plane momentum component, q_z. At the magnetic zone boundary (q_z = 0),
spin excitations in the ordered state persist down to 20 meV, which implies a
much smaller value of the effective out-of-plane exchange interaction, J_c, as
compared to previous estimates based on fitting the high-energy spin-wave
dispersion to a Heisenberg-type model.Comment: 5 pages, 4 figures, 1 tabl
Recommended from our members
Evolution of the eyes of vipers with and without infrared-sensing pit organs
We examined lens and brille transmittance, photoreceptors, visual pigments, and visual opsin gene sequences of viperid snakes with and without infrared-sensing pit organs. Ocular media transmittance is high in both groups. Contrary to previous reports, small as well as large single cones occur in pit vipers. Non-pit vipers differ from pit vipers in having a twotiered retina, but few taxa have been examined for this poorly understood feature. All vipers sampled express rh1, sws1 and lws visual opsin genes. Opsin spectral tuning varies but not in accordance with the presence/absence of pit organs, and not always as predicted from gene sequences. The visual opsin genes were generally under purifying selection, with positive selection at spectral tuning amino acids in RH1 and SWS1 opsins, and at retinal pocket stabilization sites in RH1 or LWS (and without substantial differences between pit and nonpit vipers). Lack of evidence for sensory trade-off between viperid eyes (in the aspects examined) and pit organs might be explained by the high degree of neural integration of vision and infrared detection; the latter representing an elaboration of an existing sense with addition of a novel sense organ, rather than involving the evolution of a wholly novel sensory system
- âŠ