12,361 research outputs found
MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity
We have investigated the genetic circuitry underlying the determination of neuronal identity, using mammalian peripheral autonomic neurons as a model system. Previously, we showed that treatment of neural crest stem cells (NCSCs) with bone morphogenetic protein-2 (BMP-2) leads to an induction of MASH1 expression and consequent autonomic neuronal differentiation. We now show that BMP2 also induces expression of the paired homeodomain transcription factor Phox2a, and the GDNF/NTN signalling receptor tyrosine kinase c-RET. Constitutive expression of MASH1 in NCSCs from a retroviral vector, in the absence of exogenous BMP2, induces expression of both Phox2a and c-RET in a large fraction of infected colonies, and also promotes morphological neuronal differentiation and expression of pan-neuronal markers. In vivo, expression of Phox2a in autonomic ganglia is strongly reduced in Mash1 -/- embryos. These loss- and gain-of-function data suggest that MASH1 positively regulates expression of Phox2a, either directly or indirectly. Constitutive expression of Phox2a, by contrast to MASH1, fails to induce expression of neuronal markers or a neuronal morphology, but does induce expression of c-RET. These data suggest that MASH1 couples expression of pan-neuronal and subtype-specific components of autonomic neuronal identity, and support the general idea that identity is established by combining subprograms involving cascades of transcription factors, which specify distinct components of neuronal phenotype
Comparison of the generic neuronal differentiation and neuron subtype specification functions of mammalian achaete-scute and atonal homologs in cultured neural progenitor cells
In the vertebrate peripheral nervous system, the proneural genes neurogenin 1 and neurogenin 2 (Ngn1 and Ngn2), and Mash1 are required for sensory and autonomic neurogenesis, respectively. In cultures of neural tube-derived, primitive PNS progenitors NGNs promote expression of sensory markers and MASH1 that of autonomic markers. These effects do not simply reflect enhanced neuronal differentiation, suggesting that both bHLH factors also specify neuronal identity like their Drosophila counterparts. At high concentrations of BMP2 or in neural crest stem cells (NCSCs), however, NGNs like MASH1 promote only autonomic marker expression. These data suggest that that the identity specification function of NGNs is more sensitive to context than is that of MASH1. In NCSCs, MASH1 is more sensitive to Notch-mediated inhibition of neurogenesis and cell cycle arrest, than are the NGNs. Thus, the two proneural genes differ in other functional properties besides the neuron subtype identities they can promote. These properties may explain cellular differences between MASH1- and NGN-dependent lineages in the timing of neuronal differentiation and cell cycle exit
Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers and Mash-1-dependence
Enteric and sympathetic neurons have previously been proposed to be lineally related. We present independent lines of evidence that suggest that enteric neurons arise from at least two lineages, only one of which expresses markers in common with sympathoadrenal cells. In the rat, sympathoadrenal markers are expressed, in the same order as in sympathetic neurons, by a subset of enteric neuronal precursors, which also transiently express tyrosine hydroxylase. If this precursor pool is eliminated in vitro by complement-mediated lysis, enteric neurons continue to develop; however, none of these are serotonergic. In the mouse, the Mash-1−/− mutation, which eliminates sympathetic neurons, also prevents the development of enteric serotonergic neurons. Other enteric neuronal populations, however, including those that contain calcitonin gene related peptide are present. Enteric tyrosine hydroxylase-containing cells co-express Mash-1 and are eliminated by the Mash-1−/− mutation, consistent with the idea that in the mouse, as in the rat, these precursors generate serotonergic neurons. Serotonergic neurons are generated early in development, while calcitonin gene related peptide-containing enteric neurons are generated much later. These data suggest that enteric neurons are derived from at least two progenitor lineages. One transiently expresses sympathoadrenal markers, is Mash-1-dependent, and generates early-born enteric neurons, some of which are serotonergic. The other is Mash-1-independent, does not express sympathoadrenal markers, and generates late-born enteric neurons, some of which contain calcitonin gene related peptide
Chlorophyll fluorescence data reveals climate-related photosynthesis seasonality in Amazonian forests
This is the final version of the article. Available from MDPI via the DOI in this record.Amazonia is theworld largest tropical forest, playing a key role in the global carbon cycle. Thus, understanding climate controls of photosynthetic activity in this region is critical. The establishment of the relationship between photosynthetic activity and climate has been controversial when based on conventional remote sensing-derived indices. Here, we use nine years of solar-induced chlorophyll fluorescence (ChlF) data from the Global Ozone Monitoring Experiment (GOME-2) sensor, as a direct proxy for photosynthesis, to assess the seasonal response of photosynthetic activity to solar radiation and precipitation in Amazonia. Our results suggest that 76% of photosynthesis seasonality in Amazonia is explained by seasonal variations of solar radiation. However, 13% of these forests are limited by precipitation. The combination of both radiation and precipitation drives photosynthesis in the remaining 11% of the area. Photosynthesis tends to rise only after radiation increases in 61% of the forests. Furthermore, photosynthesis peaks in the wet season in about 58% of the Amazon forest. We found that a threshold of ≈1943 mm per year can be defined as a limit for precipitation phenological dependence. With the potential increase in the frequency and intensity of extreme droughts, forests that have the photosynthetic process currently associated with radiation seasonality may shift towards a more water-limited system.We gratefully acknowledge the CAPES and FAPESP (Grants No. 13/14520-6 and No.
2013/50533-5) agencies for providing research fellowships and support this work. L.O.A and L.E.O.C.A thank the
National Council for Scientific and Technological Development (CNPq), for the productivity fellowship, processes
number 309247/2016-0 and 305054/2016-3, respectively. F.H.W. have been funded by the FAPESP (process number
13/14520-6, process number 15/50484-0 and process number 16/17652-9)
Increased wildfire risk driven by climate and development interactions in the Bolivian Chiquitania, Southern Amazonia.
This is the final version of the article. Available from the publisher via the DOI in this record.Wildfires are becoming increasingly dominant in tropical landscapes due to reinforcing feedbacks between land cover change and more severe dry conditions. This study focused on the Bolivian Chiquitania, a region located at the southern edge of Amazonia. The extensive, unique and well-conserved tropical dry forest in this region is susceptible to wildfires due to a marked seasonality. We used a novel approach to assess fire risk at the regional level driven by different development trajectories interacting with changing climatic conditions. Possible future risk scenarios were simulated using maximum entropy modelling with presence-only data, combining land cover, anthropogenic and climatic variables. We found that important determinants of fire risk in the region are distance to roads, recent deforestation and density of human settlements. Severely dry conditions alone increased the area of high fire risk by 69%, affecting all categories of land use and land cover. Interactions between extreme dry conditions and rapid frontier expansion further increased fire risk, resulting in potential biomass loss of 2.44±0.8 Tg in high risk area, about 1.8 times higher than the estimates for the 2010 drought. These interactions showed particularly high fire risk in land used for 'extensive cattle ranching', 'agro-silvopastoral use' and 'intensive cattle ranching and agriculture'. These findings have serious implications for subsistence activities and the economy in the Chiquitania, which greatly depend on the forestry, agriculture and livestock sectors. Results are particularly concerning if considering the current development policies promoting frontier expansion. Departmental protected areas inhibited wildfires when strategically established in areas of high risk, even under drought conditions. However, further research is needed to assess their effectiveness accounting for more specific contextual factors. This novel and simple modelling approach can inform fire and land management decisions in the Chiquitania and other tropical forest landscapes to better anticipate and manage large wildfires in the future.The author(s) received no specific funding
for this research. The study was mostly self-funded
by the corresponding author TD as part of her PhD
thesis. TD was supported by the Santander
Academic Travel Award to visit INPE as part of this
study
Fabrication of a Large, Ordered, Three-Dimensional Nanocup Array
Metallic nanocups provide a unique method for redirecting scattered light by creating magnetic plasmon responses at optical frequencies. Despite considerable development of nanocup fabrication processes, simultaneously achieving accurate control over the placement, orientation, and geometry of nanocups has remained a significant challenge. Here we present a technique for fabricating large, periodically ordered arrays of uniformly oriented three-dimensional gold nanocups for manipulating light at subwavelength scales. Nanoimprint lithography, soft lithography, and shadow evaporation were used to fabricate nanocups onto the tips of polydimethylsiloxane nanopillars with precise control over the shapes and optical properties of asymmetric nanocups
Cell Lineage Determination and the Control of Neuronal Identity in the Neural Crest
The diverse cell types of complex tissues such as the blood and the brain are generated from self-renewing, multipotent progenitors called stem cells (for reviews, see Hall and Watt 1989; Potten and Loeffler 1990; Morrison et al. 1997). These stem cells must generate progeny of different phenotypes, in the correct proportions, sequence, and location. The manner in which this is accomplished is not well understood. It is clear that the local microenvironment of stem cells has an important influence on their development, as do transcription factors that act within the cells. However, the manner in which such signals and transcription factors interact to control lineage determination by multipotent stem cells is poorly understood. To address this issue, it is necessary to both alter the expression of transcription factors in stem cells and challenge the cells by altering their environment to determine their state of lineage commitment. There are relatively few experimental systems in which such combined
genetic and cell biological manipulation of stern
cells are feasible
Connectional architecture of a mouse hypothalamic circuit node controlling social behavior
Type 1 estrogen receptor-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl^(Esr1)) play a causal role in the control of social behaviors, including aggression. Here we use six different viral-genetic tracing methods to systematically map the connectional architecture of VMHvl^(Esr1) neurons. These data reveal a high level of input convergence and output divergence (“fan-in/fan-out”) from and to over 30 distinct brain regions, with a high degree (∼90%) of bidirectionality, including both direct as well as indirect feedback. Unbiased collateralization mapping experiments indicate that VMHvl^(Esr1) neurons project to multiple targets. However, we identify two anatomically distinct subpopulations with anterior vs. posterior biases in their collateralization targets. Nevertheless, these two subpopulations receive indistinguishable inputs. These studies suggest an overall system architecture in which an anatomically feed-forward sensory-to-motor processing stream is integrated with a dense, highly recurrent central processing circuit. This architecture differs from the “brain-inspired,” hierarchical feed-forward circuits used in certain types of artificial intelligence networks
Experimental investigation of optical atom traps with a frequency jump
We study the evolution of a trapped atomic cloud subject to a trapping
frequency jump for two cases: stationary and moving center of mass. In the
first case, the frequency jump initiates oscillations in the cloud's momentum
and size. At certain times we find the temperature is significantly reduced.
When the oscillation amplitude becomes large enough, local density increases
induced by the anharmonicity of the trapping potential are observed. In the
second case, the oscillations are coupled to the center of mass motion through
the anharmonicity of the potential. This induces oscillations with even larger
amplitudes, enhancing the temperature reduction effects and leading to
nonisotropic expansion rates while expanding freely.Comment: 8 figures, Journal of Physics B: At. Mol. Op. Phy
- …
