19 research outputs found

    The High Osmolarity Glycerol Mitogen-Activated Protein Kinase regulates glucose catabolite repression in filamentous fungi

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.The utilization of different carbon sources in filamentous fungi underlies a complex regulatory network governed by signaling events of different protein kinase pathways, including the high osmolarity glycerol (HOG) and protein kinase A (PKA) pathways. This work unraveled cross-talk events between these pathways in governing the utilization of preferred (glucose) and non-preferred (xylan, xylose) carbon sources in the reference fungus Aspergillus nidulans. An initial screening of a library of 103 non-essential protein kinase (NPK) deletion strains identified several mitogen-activated protein kinases (MAPKs) to be important for carbon catabolite repression (CCR). We selected the MAPKs Ste7, MpkB, and PbsA for further characterization and show that they are pivotal for HOG pathway activation, PKA activity, CCR via regulation of CreA cellular localization and protein accumulation, as well as for hydrolytic enzyme secretion. Protein-protein interaction studies show that Ste7, MpkB, and PbsA are part of the same protein complex that regulates CreA cellular localization in the presence of xylan and that this complex dissociates upon the addition of glucose, thus allowing CCR to proceed. Glycogen synthase kinase (GSK) A was also identified as part of this protein complex and shown to potentially phosphorylate two serine residues of the HOG MAPKK PbsA. This work shows that carbon source utilization is subject to cross-talk regulation by protein kinases of different signaling pathways. Furthermore, this study provides a model where the correct integration of PKA, HOG, and GSK signaling events are required for the utilization of different carbon sources.Fundac¸ão de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    The Aspergillus fumigatus transcription factor RglT is important for gliotoxin biosynthesis and self-protection, and virulence

    Get PDF
    This is the final version (corrected proof). The final published version is available from Public Library of Science via the DOI in this recordData Availability: Short reads were submitted to the NCBI’s Sequence Read Archive under accession number SRP154617 (https://www.ncbi.nlm.nih.gov/sra/?term=SRP154617). The ChIPseq data are available from NCBI SRA (sequence read archive) database under accession number PRJNA574873 (https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA574873&o=acc_s%3Aa).Aspergillus fumigatus is an opportunistic fungal pathogen that secretes an array of immune-modulatory molecules, including secondary metabolites (SMs), which contribute to enhancing fungal fitness and growth within the mammalian host. Gliotoxin (GT) is a SM that interferes with the function and recruitment of innate immune cells, which are essential for eliminating A. fumigatus during invasive infections. We identified a C6 Zn cluster-type transcription factor (TF), subsequently named RglT, important for A. fumigatus oxidative stress resistance, GT biosynthesis and self-protection. RglT regulates the expression of several gli genes of the GT biosynthetic gene cluster, including the oxidoreductase-encoding gene gliT, by directly binding to their respective promoter regions. Subsequently, RglT was shown to be important for virulence in a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA). Homologues of RglT and GliT are present in eurotiomycete and sordariomycete fungi, including the non-GT-producing fungus A. nidulans, where a conservation of function was described. Phylogenetically informed model testing led to an evolutionary scenario in which the GliT-based resistance mechanism is ancestral and RglT-mediated regulation of GliT occurred subsequently. In conclusion, this work describes the function of a previously uncharacterised TF in oxidative stress resistance, GT biosynthesis and self-protection in both GT-producing and non-producing Aspergillus species.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESPConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES)Wellcome TrustUniversity of MacauNational Science Foundation (NSF)Vanderbilt UniversityHoward Hughes Medical Institut

    Aspergillus fumigatus Acetate Utilization Impacts Virulence Traits and Pathogenicity

    Get PDF
    This is the final version. Available on open access from the American Society for Microbiology via the DOI in this recordData availability: The RNA-seq data set can be accessed at NCBI’s Short Read Archive under the Bioproject identifier (ID) PRJNA668271.Aspergillus fumigatus is a major opportunistic fungal pathogen of immunocompromised and immunocompetent hosts. To successfully establish an infection, A. fumigatus needs to use host carbon sources, such as acetate, present in the body fluids and peripheral tissues. However, utilization of acetate as a carbon source by fungi in the context of infection has not been investigated. This work shows that acetate is metabolized via different pathways in A. fumigatus and that acetate utilization is under the regulatory control of a transcription factor (TF), FacB. A. fumigatus acetate utilization is subject to carbon catabolite repression (CCR), although this is only partially dependent on the TF and main regulator of CCR CreA. The available extracellular carbon source, in this case glucose and acetate, significantly affected A. fumigatus virulence traits such as secondary metabolite secretion and cell wall composition, with the latter having consequences for resistance to oxidative stress, antifungal drugs, and human neutrophil-mediated killing. Furthermore, deletion of facB significantly impaired the in vivo virulence of A. fumigatus in both insect and mammalian models of invasive aspergillosis. This is the first report on acetate utilization in A. fumigatus, and this work further highlights the importance of available host-specific carbon sources in shaping fungal virulence traits and subsequent disease outcome, and a potential target for the development of antifungal strategies

    Aspergillus nidulans protein kinase A plays an important role in cellulase production

    No full text
    BACKGROUND: The production of bioethanol from lignocellulosic feedstocks is dependent on lignocellulosic biomass degradation by hydrolytic enzymes. The main component of lignocellulose is cellulose and different types of organisms are able to secrete cellulases. The filamentous fungus Aspergillus nidulans serves as a model organism to study cellulase production and the available tools allow exploring more in depth the mechanisms governing cellulase production and carbon catabolite repression. RESULTS: In A. nidulans, microarray data identified the cAMP-dependent protein kinase A (PkaA) as being involved in the transcriptional modulation and the production of lignocellulolytic enzymes in the presence of cellulose. Deletion of pkaA resulted in increased hydrolytic enzyme secretion, but reduced growth in the presence of lignocellulosic components and various other carbon sources. Furthermore, genes involved in fungal development were increased in the ΔpkaA strain, probably leading to the increased hyphal branching as was observed in this strain. This would allow the secretion of higher amounts of proteins. In addition, the expression of SynA, encoding a V-SNARE synaptobrevin protein involved in secretion, was increased in the ΔpkaA mutant. Deletion of pkaA also resulted in the reduced nuclear localization of the carbon catabolite repressor CreA in the presence of glucose and in partial de-repression when grown on cellulose. PkaA is involved in the glucose signaling pathway as the absence of this protein resulted in reduced glucose uptake and lower hexokinase/glucokinase activity, directing the cell to starvation conditions. Genome-wide transcriptomics showed that the expression of genes encoding proteins involved in fatty acid metabolism, mitochondrial function and in the use of cell storages was increased. CONCLUSIONS: This study shows that PkaA is involved in hydrolytic enzyme production in A. nidulans. It appears that this protein kinase blocks the glucose pathway, hence forcing the cell to change to starvation conditions, increasing hydrolytic enzyme secretion and inducing the usage of cellular storages. This work uncovered new regulatory avenues governing the tight interplay between the metabolic states of the cell, which are important for the production of hydrolytic enzymes targeting lignocellulosic biomass. Deletion of pkaA resulted in a strain with increased hydrolytic enzyme secretion and reduced biomass formation

    The High Osmolarity Glycerol Mitogen-Activated Protein Kinase regulates glucose catabolite repression in filamentous fungi

    No full text
    The utilization of different carbon sources in filamentous fungi underlies a complex regulatory network governed by signaling events of different protein kinase pathways, including the high osmolarity glycerol (HOG) and protein kinase A (PKA) pathways. This work unraveled cross-talk events between these pathways in governing the utilization of preferred (glucose) and non-preferred (xylan, xylose) carbon sources in the reference fungus Aspergillus nidulans. An initial screening of a library of 103 non-essential protein kinase (NPK) deletion strains identified several mitogen-activated protein kinases (MAPKs) to be important for carbon catabolite repression (CCR). We selected the MAPKs Ste7, MpkB, and PbsA for further characterization and show that they are pivotal for HOG pathway activation, PKA activity, CCR via regulation of CreA cellular localization and protein accumulation, as well as for hydrolytic enzyme secretion. Protein-protein interaction studies show that Ste7, MpkB, and PbsA are part of the same protein complex that regulates CreA cellular localization in the presence of xylan and that this complex dissociates upon the addition of glucose, thus allowing CCR to proceed. Glycogen synthase kinase (GSK) A was also identified as part of this protein complex and shown to potentially phosphorylate two serine residues of the HOG MAPKK PbsA. This work shows that carbon source utilization is subject to cross-talk regulation by protein kinases of different signaling pathways. Furthermore, this study provides a model where the correct integration of PKA, HOG, and GSK signaling events are required for the utilization of different carbon sources

    The <i>Aspergillus nidulans</i> Pyruvate Dehydrogenase Kinases Are Essential To Integrate Carbon Source Metabolism

    No full text
    Abstract The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilization in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilization in the reference filamentous fungus Aspergillus nidulans, in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localized to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilization, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilization of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications.</jats:p

    Regulation of <i>Aspergillus nidulans</i> CreA-Mediated Catabolite Repression by the F-Box Proteins Fbx23 and Fbx47

    No full text
    ABSTRACT The attachment of one or more ubiquitin molecules by SCF ( S kp– C ullin– F -box) complexes to protein substrates targets them for subsequent degradation by the 26S proteasome, allowing the control of numerous cellular processes. Glucose-mediated signaling and subsequent carbon catabolite repression (CCR) are processes relying on the functional regulation of target proteins, ultimately controlling the utilization of this carbon source. In the filamentous fungus Aspergillus nidulans , CCR is mediated by the transcription factor CreA, which modulates the expression of genes encoding biotechnologically relevant enzymes. Although CreA-mediated repression of target genes has been extensively studied, less is known about the regulatory pathways governing CCR and this work aimed at further unravelling these events. The Fbx23 F-box protein was identified as being involved in CCR and the Δ fbx23 mutant presented impaired xylanase production under repressing (glucose) and derepressing (xylan) conditions. Mass spectrometry showed that Fbx23 is part of an SCF ubiquitin ligase complex that is bridged via the GskA protein kinase to the CreA-SsnF-RcoA repressor complex, resulting in the degradation of the latter under derepressing conditions. Upon the addition of glucose, CreA dissociates from the ubiquitin ligase complex and is transported into the nucleus. Furthermore, casein kinase is important for CreA function during glucose signaling, although the exact role of phosphorylation in CCR remains to be determined. In summary, this study unraveled novel mechanistic details underlying CreA-mediated CCR and provided a solid basis for studying additional factors involved in carbon source utilization which could prove useful for biotechnological applications. IMPORTANCE The production of biofuels from plant biomass has gained interest in recent years as an environmentally friendly alternative to production from petroleum-based energy sources. Filamentous fungi, which naturally thrive on decaying plant matter, are of particular interest for this process due to their ability to secrete enzymes required for the deconstruction of lignocellulosic material. A major drawback in fungal hydrolytic enzyme production is the repression of the corresponding genes in the presence of glucose, a process known as carbon catabolite repression (CCR). This report provides previously unknown mechanistic insights into CCR through elucidating part of the protein-protein interaction regulatory system that governs the CreA transcriptional regulator in the reference organism Aspergillus nidulans in the presence of glucose and the biotechnologically relevant plant polysaccharide xylan. </jats:p

    The <i>Aspergillus fumigatus</i> CrzA Transcription Factor Activates Chitin Synthase Gene Expression during the Caspofungin Paradoxical Effect

    No full text
    ABSTRACT Aspergillus fumigatus is an opportunistic fungal pathogen that causes invasive aspergillosis (IA), a life-threatening disease in immunocompromised humans. The echinocandin caspofungin, adopted as a second-line therapy in combating IA, is a β-1,3-glucan synthase inhibitor, which, when used in high concentrations, reverts the anticipated A. fumigatus growth inhibition, a phenomenon called the “caspofungin paradoxical effect” (CPE). The CPE has been widely associated with increased chitin content in the cell wall due to a compensatory upregulation of chitin synthase-encoding genes. Here, we demonstrate that the CPE is dependent on the cell wall integrity (CWI) mitogen-activated protein kinase MpkA MPK1 and its associated transcription factor (TF) RlmA RLM1 , which regulate chitin synthase gene expression in response to different concentrations of caspofungin. Furthermore, the calcium- and calcineurin-dependent TF CrzA binds to and regulates the expression of specific chitin synthase genes during the CPE. These results suggest that the regulation of cell wall biosynthetic genes occurs by several cellular signaling pathways. In addition, CrzA is also involved in cell wall organization in the absence of caspofungin. Differences in the CPE were also observed between two A. fumigatus clinical isolates, which led to the identification of a novel basic leucine zipper TF, termed ZipD. This TF functions in the calcium-calcineurin pathway and is involved in the regulation of cell wall biosynthesis genes. This study therefore unraveled additional mechanisms and novel factors governing the CPE response, which ultimately could aid in developing more effective antifungal therapies. IMPORTANCE Systemic Aspergillus fumigatus infections are often accompanied by high mortality rates. The fungal cell wall is important for infection as it has immunomodulatory and immunoevasive properties. Paradoxical growth of A. fumigatus in the presence of high concentrations of the cell wall-disturbing agent caspofungin has been observed for more than a decade, although the mechanistic nature of this phenomenon remains largely uncharacterized. Here, we show that the CWI pathway components MpkA and RlmA as well as the calcium/calcineurin-responsive transcription factor CrzA regulate the expression of cell wall biosynthetic genes during the caspofungin paradoxical effect (CPE). Furthermore, an additional, novel calcium/calcineurin-responsive transcription factor was identified to play a role in cell wall biosynthesis gene expression during the CPE. This work paints a crucial role for calcium metabolism in the CPE and provides further insight into the complex regulation of cell wall biosynthesis, which could ultimately lead to the development of more efficient antifungal therapies. </jats:p

    Protein Kinase A and High-Osmolarity Glycerol Response Pathways Cooperatively Control Cell Wall Carbohydrate Mobilization in <i>Aspergillus fumigatus</i>

    No full text
    Aspergillus fumigatus is an opportunistic human pathogen causing allergic reactions or systemic infections such as invasive pulmonary aspergillosis, especially in immunocompromised patients. The fungal cell wall is the main component responsible for recognition by the immune system, due to the specific composition of polysaccharide carbohydrates exposed on the surface of the fungal cell wall called pathogen-associated molecular patterns (PAMPs). Key enzymes in the fungal cell wall biosynthesis are a good target for fungal drug development. This report elucidates the cooperation between the HOG and PKA pathways in the mobilization of carbohydrates for fungal cell wall biosynthesis. We suggest that the reduced mobilization of simple sugars causes defects in the structure of the fungal cell wall. In summary, we propose that SakA is important for PKA activity, therefore regulating the availability and mobilization of monosaccharides for fungal cell wall biosynthesis during cell wall damage and the osmotic stress response. </jats:p

    The low affinity glucose transporter HxtB is also involved in glucose signalling and metabolism in Aspergillus nidulans

    No full text
    AbstractOne of the drawbacks during second-generation biofuel production from plant lignocellulosic biomass is the accumulation of glucose, the preferred carbon source of microorganisms, which causes the repression of hydrolytic enzyme secretion by industrially relevant filamentous fungi. Glucose sensing, subsequent transport and cellular signalling pathways have been barely elucidated in these organisms. This study therefore characterized the transcriptional response of the filamentous fungus Aspergillus nidulans to the presence of high and low glucose concentrations under continuous chemostat cultivation with the aim to identify novel factors involved in glucose sensing and signalling. Several transcription factor- and transporter-encoding genes were identified as being differentially regulated, including the previously characterized glucose and xylose transporter HxtB. HxtB was confirmed to be a low affinity glucose transporter, localizing to the plasma membrane under low- and high-glucose conditions. Furthermore, HxtB was shown to be involved in conidiation-related processes and may play a role in downstream glucose signalling. A gene predicted to encode the protein kinase PskA was also identified as being important for glucose metabolism. This study identified several proteins with predicted roles in glucose metabolic processes and provides a foundation for further investigation into the response of biotechnologically important filamentous fungi to glucose.</jats:p
    corecore