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Abstract

The utilization of different carbon sources in filamentous fungi underlies a complex regula-

tory network governed by signaling events of different protein kinase pathways, including

the high osmolarity glycerol (HOG) and protein kinase A (PKA) pathways. This work unrav-

eled cross-talk events between these pathways in governing the utilization of preferred (glu-

cose) and non-preferred (xylan, xylose) carbon sources in the reference fungus Aspergillus

nidulans. An initial screening of a library of 103 non-essential protein kinase (NPK) deletion

strains identified several mitogen-activated protein kinases (MAPKs) to be important for car-

bon catabolite repression (CCR). We selected the MAPKs Ste7, MpkB, and PbsA for further

characterization and show that they are pivotal for HOG pathway activation, PKA activity,

CCR via regulation of CreA cellular localization and protein accumulation, as well as for

hydrolytic enzyme secretion. Protein-protein interaction studies show that Ste7, MpkB, and

PbsA are part of the same protein complex that regulates CreA cellular localization in the

presence of xylan and that this complex dissociates upon the addition of glucose, thus allow-

ing CCR to proceed. Glycogen synthase kinase (GSK) A was also identified as part of this

protein complex and shown to potentially phosphorylate two serine residues of the HOG

MAPKK PbsA. This work shows that carbon source utilization is subject to cross-talk regula-

tion by protein kinases of different signaling pathways. Furthermore, this study provides a

model where the correct integration of PKA, HOG, and GSK signaling events are required

for the utilization of different carbon sources.

Author summary

Filamentous fungi secrete an array of biotechnologically valuable enzymes, with enzyme

production being inhibited in the presence of preferred carbon sources, such as glucose,
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in a process known as carbon catabolite repression (CCR). This work unravels upstream

signalling events that regulate CCR in Aspergillus nidulans. Different mitogen-activated

protein kinases (MAPKs) were identified and shown to be crucial for CCR and protein

kinase A (PKA) activity, which is essential for carbon source utilisation in filamentous

fungi. Furthermore, the MAPKs formed a protein complex with additional protein

kinases, such as glycogen synthase kinase (GSK), which is important for glucose metabo-

lism; resulting in the inhibition of CCR in the presence of non-preferred carbon sources.

GSK was shown to potentially phosphorylate the MAPK PbsA of the high osmolarity glyc-

erol (HOG) pathway. This study thus unravels the cross-talk between protein kinases

from different signalling pathways that regulate carbon source utilisation in filamentous

fungi.

Introduction

Protein phosphorylation, which is catalysed by protein kinases, is crucial for target protein

function and/or cellular localization, resulting in the regulation of a variety of cellular pro-

cesses and signalling pathways. In the filamentous fungus A. nidulans, a role for protein

kinases in the regulation of carbon utilisation pathways, such as carbon catabolite repression

(CCR), has been shown [1]. CCR is a mechanism by which fungi use the energetically most

favourable carbon source (e.g. glucose), and in A. nidulans, this process is regulated by the

transcription factor (TF) CreA. Homologues of CreA are present in other filamentous fungi,

including Trichoderma reesei, Neurospora crassa, A. flavus, A. niger, and A. fumigatus, where

this TF is also important for the regulation of genes encoding hydrolytic enzymes, such as xyla-

nases and cellulases, as well as for the use of alternative carbon sources and glucose metabolism

[2–6]. In the presence of glucose, CreA localizes to the nucleus, where it represses genes

required for the utilisation of non-glycolytic carbon sources, whereas the absence of glucose

causes translocation of CreA to the cytoplasm [7].

Several studies have supported the role of phosphorylation in the post-translational regula-

tion of CreA [8–11]. In Saccharomyces cerevisiae and A. nidulans, the AMP-activated protein

kinase Snf1p/SnfA regulates cellular localization of Mig1p (CreA homologue)/CreA. Under

glucose stress or starvation conditions, Snf1p is activated by phosphorylation at threonine 210,

resulting in the subsequent translocation of Snf1p to the nucleus, where it phosphorylates

Mig1p [12,13]. Subsequently, Mig1p re-localizes to the cytoplasm, relieving gene repression

and allowing induction of genes encoding enzymes required for alternative carbon source uti-

lisation [12–14]. In A. nidulans, SnfA regulates the assimilation and utilization of alternative

carbon sources [1]. The deletion of snfA causes CreA to permanently reside within the nucleus

even in carbon catabolite (CC)-de-repressing conditions [1]. Furthermore, the role of the A.

nidulans cAMP-dependent protein kinase A (PKA) catalytic subunit PkaA in the regulation of

CreA, has been shown. Deletion of pkaA results in CC-de-repression, even in the presence of

glucose, due to aberrant CreA cellular localization and glucose signalling, therefore increasing

the amount of secreted hydrolytic enzymes in both CC-repressing and de-repressing condi-

tions [15]. In T. reesei, phosphorylation of CRE1 (CreA homologue) at serine 241, is catalyzed

by casein kinase and is required for stabilizing CRE1 in the nucleus [10]. In A. nidulans, CreA

was shown to be phosphorylated directly at serine 262 by casein kinase A (CkiA) and indirectly

at serine 319 by PkaA in the presence of glucose, suggesting that CreA phosphorylation is

required for repression in this fungus [9,11].
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Adding to the complexity of the regulation of carbon source utilisation is the interaction of

different cellular signalling pathways. Glucose signalling and CCR are intrinsically connected,

with the phosphorylation of glucose during the first step of glycolysis serving as a signal for the

activation of CCR [16,17]. In S. cerevisiae, the absence of glucose phosphorylation in the triple

protein kinase deletion mutant ΔGLK1 ΔHXK1 ΔHXK2, results in a reduction of Ras2 activity,

cAMP induction and PKA activity [18], since cAMP is required for PKA activation through

binding to the PKA regulatory subunit [19]. In A. nidulans, the deletion of pkaA impairs hexo/

glucokinase activities and glucose transport, further supporting the importance of the PKA

pathway for glucose metabolism and CCR [15]. In some plant pathogenic fungi such as Alter-
naria brassicicola, Cochliobolus heterostrophus, and Fusarium oxysporum, mitogen-activated

protein kinase pathways (MAPKs) were shown to play a role in the secretion of hydrolytic

enzymes [10,20,21]. In N. crassa, the High Osmolarity Glycerol (HOG) MAPK pathway senses

the presence of free soluble sugars and regulates the expression of genes required for the use of

alternative carbon sources [22]. In T. reesei, the HOG MAPK pathway was reported to be

involved in the induction of cellulase-encoding genes, with the absence of the MAPKs TMK1

and TMK2 resulting in increased cellulase production even if fungal growth was impaired

[23,24].

Cross-talk between signaling pathways, such as the one between the PKA and HOG MAPK

pathways, in response to extracellular stresses and stimuli, appears to be conserved from yeast

to mammalian cells. In mammalian neuronal cells, cAMP/PKA signaling results in the activa-

tion of the MAPK pathway, resulting in the regulation of plasticity-associated genes [25,26].

Furthermore, the presence of glucose activates the insulin pathway, resulting in the phosphor-

ylation and inactivation of glycogen synthase kinase 3 (GSK3), which in turn allows glycogen

synthesis, catalyzed by glycogen synthase a, to proceed [27]. In fungi, glycogen and trehalose

metabolism are controlled by GSK and the PKA pathway, suggesting a conservation of func-

tion for PKA in the regulation of glycogen metabolism [6,28,29].

The aforementioned studies suggest a complex interplay of different protein kinase signal-

ing pathways, that are involved in fungal carbon source utilization, and that coordinately have

not extensively been investigated in one single fungal species. This work therefore aimed at

elucidating the signaling events that govern the utilization of preferred and alternative carbon

sources in the reference filamentous fungus A. nidulans. This study provides strong evidence

for cross-talk between the HOG and PKA pathways in regulating sugar utilization and shows

that GSK is also important for these events. We propose a model whereby the correct integra-

tion of signaling events and cascades that constitute the different pathways are crucial for glu-

cose-mediated CCR as well as CC-de-repression and subsequent secretion of hydrolytic

enzymes that are required for alternative carbon source utilization in A. nidulans.

Results

Mitogen-activated protein kinases (MAPK) are important for CCR

In order to determine which protein kinases are important for CCR, an A. nidulans library,

containing 103 non-essential protein kinase (NPK) deletion strains [30], was screened for

growth in the presence of 2-deoxyglucose (2DG) and allyl alcohol (AA). 2DG and AA are indi-

cators for defects in CCR [31,32], with 2DG being a glucose analogue that cannot be metabo-

lized, and AA being converted to the highly toxic compound acrolein by alcohol

dehydrogenase (ADH) [33–35]. Growth phenotypes of 2DG- and AA- resistant or sensitive

strains were confirmed by radial growth on plates and compared to the wild-type strain in the

condition (Fig 1A and 1B). We identified nine protein kinase deletion strains (ΔatmA, Δoca2,

Δkin1, Δste7, ΔmpkB, ΔmpkC, Δppk33, ΔsnfA, and Δscy1) that were sensitive to at least one
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concentration of 2DG and six strains (Δcak1, ΔpbsA, Δste20, Δssn3, ΔckiB and ΔfphA) that

were resistant to 2DG (Fig 1A). Furthermore, eleven protein kinase deletion strains (ΔpbsA,

ΔsakA, Δprk1, Δatg1, Δste20, Δstk26, Δppk33, ΔchkC, ΔsldA, Δscy1, and Δhk2) were sensitive to

at least one concentration of AA; and three strains (Δoca2, ΔckiB and Δhk-8-4) were resistant

to AA (Fig 1B). In the cell, AA is converted to acrolein, a potent inducer of oxidative stress

[36–38]. To determine whether the observed strain phenotypes could also be related to defects

Fig 1. Mitogen-activated protein kinases (MAPKs) are important for CCR. Heat map and values depicting average radial growth of three biological replicates of

protein kinase deletion strains that were significantly sensitive or resistant to at least one concentration of 2-deoxyglucose (2DG) (a) or allyl alcohol (AA) (b). Strains

were grown from 105 spores on glucose or xylose minimal medium (MM) supplemented with increasing concentrations of 2DG and AA for 5 days at 37˚C before

colony diameter was determined. Growth is given as the percentage in comparison to the control (without 2DG, AA) condition for each strain. Extracellular glucose

concentrations were determined in culture supernatants of all MAPK deletion strains grown from 107 spores after transfer from complete medium (24 h) to glucose

MM for 39 h at 37˚C (c). Also shown is the fungal dry weight of the same strains after 39 h (d). Standard deviations represent the average of six biological replicates, with
�p-value<0.05, ��p-value<0.001, ���p-value<0.0001 in a two-way ANOVA multiple comparison test.

https://doi.org/10.1371/journal.pgen.1008996.g001
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in the oxidative stress response, we assessed resistance and sensitivity of these strains to acro-

lein (S1 Fig). Strains ΔpbsA, ΔsakA, Δprk1, Δatg1, Δste20, ΔckiB, Δstk26, ΔsldA, ΔscyA, and

Δhk-8-4 were sensitive to increased concentrations of acrolein (S1 Fig). These strains, with the

exception of the ΔckiB and Δhk-8-4 strains were also sensitive to AA (S1 Fig). These results

therefore suggest that the observed strain resistance/sensitivity phenotypes to AA could be due

to either defects in CCR and/or oxidative stress responses.

Of particular interest was the presence of several 2DG- and/or AA- sensitive and resistant

strains that were deleted for genes encoding protein kinases of different MAPK pathways. To

further determine the role of these MAPK pathway deletion strains in CCR, glucose transport

was measured in all NPKs, that are part of a MAPK pathway, and sensitive/resistant to 2DG

and AA. It has been shown that increased resistance or sensitivity to 2DG can be due to a

reduction in glucose uptake in a mutation-dependent manner [39,40] in addition to other

2-DG off-target effects [41]. Furthermore, the first step of glucose phosphorylation is essential

for CCR regulation and it is controlled by the PKA pathway, another important regulator of

CCR [1,15]. Glucose transport and growth in the presence of glucose was significantly reduced

in two deletion strains (ΔpbsA and ΔsakA), with another three strains (Δste7, ΔmpkB, and

ΔmpkC) showing a delay in glucose transport but no growth-associated phenotype (Fig 1C

and 1D). These results suggest that the significant reduction in glucose transport in the ΔpbsA
and ΔsakA may be related to growth impairments in this carbon source. Nevertheless, several

MAPK pathway kinases appear to be important for glucose metabolism in A. nidulans.

Different MAPKs are important for HOG pathway activation and PKA

activity

To further confirm the importance of MAPK pathways for CCR, we established a network

interaction profile of the 23 protein kinases, whose deletion resulted in a significantly altered

growth phenotype in the presence of 2DG and AA, by using String (https://string-db.org/).

Thirteen of these 23 proteins showed different degrees of network interactions (direct physical

and/or indirect genetic) interactions are presented as arrows in the direction of the target and

formed two groups: the first group is composed by oca2 (AN10019), atmA (AN0038), chkC
(AN7563), cak1 (AN0699) and sldA (AN3946); whereas the second group comprises ste7
(AN3422), mpkB (AN3719), pbsA (AN0931), ste20 (AN2067), sakA (AN1017), mpkC
(AN4668), snfA (AN7695) and ssn3 (AN2489) (Fig 2A). The second group contains the two

HOG MAPKs MpkC and SakA, that are potentially interacting with the protein kinase SnfA,

which was shown to be a key regulator of CCR [1] (Fig 2A).

Accordingly, we decided to investigate in more detail the involvement of the three MAPK

pathway-related kinases Ste7, MpkB and PbsA in the regulation of CCR, in order to determine

the regulatory influence of non-terminal, upstream MAPK pathway proteins for the utilization

of preferred and alternative carbon sources. The MAPK SakA that belongs to the HOG path-

way under the effect of red light and/or osmotic stress is activated by phosphorylation moving

to the nucleus and it has as target the transcription factor atfA that mediates the upregulation

of several genes involved in osmotic stress response, oxidative stresses, development and cell

wall [42–45]. In a first instance, HOG pathway activation was determined by using the anti-

phospho-p38 antibody to detect phosphorylated SakA by Western blot in total protein extracts

from the Δste7, ΔmpkB and ΔpbsA strains, when grown in CC-de-repressing (xylose) and CCR

(in the presence of glucose) conditions. This commercial antibody specifically recognizes

phosphorylated SakA since there are no bands in the A. nidulans ΔsakA strain (Fig 2B). In the

wild-type (WT) strain, SakA is phosphorylated in the presence of xylose and this phosphoryla-

tion is highly reduced when glucose is added (Fig 2B). To normalize the observed strain-
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specific phosphorylated SakA levels, we used anti-ß-actin as the antibody that detects total cellu-

lar protein since the anti-p38 antibody to detect total SakA does not function for A. nidulans
cellular protein extracts. The addition of glucose therefore causes inactivation of the HOG path-

way, and these results are consistent with studies in S. cerevisiae and mammalian cells [46,47].

In contrast, SakA is phosphorylated in both conditions in the Δste7 and ΔmpkB strains, with the

phosphorylation signal being much stronger in the Δste7 strain than when compared to the

ΔmpkB strain. In addition, SakA phosphorylation was very low or absent in the ΔpbsA strain

(Fig 2B). PbsA is the MAPKK and scaffold protein [48] that controls SakA phosphorylation,

and the here described results therefore confirm that PbsA also controls SakA phosphorylation

in A. nidulans. (Fig 2B). In addition, we determined cellular localization of SakA in CC-de-

repressing (xylan) and repressing (xylan and glucose) conditions by constructing a strain with a

single copy of SakA-GFP integrated at the sakA locus and under the control of the native pro-

moter. In the presence of xylan, SakA-GFP was predominantly observed in the nuclei (82.6%);

whereas the addition of 2% w/v glucose for 30 min, resulted in the partial re-localization of

SakA-GFP to the cytoplasm with SakA-GFP fluorescence observed in 52.9% of nuclei (S2 Fig).

These results suggest that SakA cellular localization is carbon source-dependent and important

for the control of carbon catabolite de-repression in A. nidulans.
In A. fumigatus, SakA physically interacts with the catalytic subunit of PKA, regulating PKA

activity under osmotic stress [28]. Due to the high conservation of function of the HOG and PKA

pathways in different fungal species, we wondered whether SakA phosphorylation is also involved

in PKA activation in A. nidulans. PKA activity was significantly higher in the ΔmpkB strain and

reduced in the ΔpbsA and ΔsakA strains in both CCR and de-repression conditions (Fig 2C).

Deletion of sakA resulted in significantly reduced PKA activity in both conditions (Fig 2C), sug-

gesting that, like in A. fumigatus, SakA is also important for PKA activity in A. nidulans, although

whether this occurs through direct physical interaction remains to be determined. In contrast,

PKA activity was significantly reduced in the Δste7 strain and increased in the ΔmpkB strain. This

pattern was also observed for SakA phosphorylation levels in these strains (Fig 2B), suggesting

that Ste7 and MpkB control PKA activity through other/additional mechanisms and/or regulatory

proteins. These results suggest that the protein kinases Ste7, MpkB and PbsA regulate, either

directly and/or indirectly, SakA phosphorylation and PKA activity in A. nidulans.

Different MAPKs are important for CreA cellular localization, protein

turnover and enzyme production

To further describe a role of MAPK pathways in CCR in A. nidulans, microscopy analysis of

CreA-GFP in the wild-type, Δste7, ΔmpkB and ΔpbsA background strains was carried out. All

Fig 2. The protein kinases Ste7, MpkB and PbsA are important for HOG and PKA pathway activation. STRING

network analysis showing direct physical and/or indirect genetic interactions (arrows) of the 27 protein kinases, which were

identified as being involved in CCR, results in two separate groups. Protein connections are depicted in a diagram having

omitted all proteins with no predicted interaction. Arrows indicate the direction of the interaction that can be physical and/

or genetic, with red arrows highlighting proteins that interact with SnfA and yellow octagons depicting the core proteins of

the network (a). SakA phosphorylation, as a direct measure of HOG pathway activation, was determined by Western blot in

the WT, Δste7, ΔmpkB and ΔpbsA strains by using an anti-P-p38 antibody. Strains were grown in xylose MM for 24 h

before glucose was added for 30 min, total cellular proteins were extracted and Western blots were carried out. Cellular

extracts from the WT and ΔsakA strains grown in glucose were used as controls. SakA phosphorylation levels were

normalized by β-actin protein levels and densitometry ratios of P-p38/β-actin are indicated (b). Ste7, MpkB, PbsA and

SakA are important for PKA pathway activation. PKA activity was determined in total protein extracts obtained from the

WT, Δste7, ΔmpkB, ΔpbsA, ΔsakA and ΔpkaA strains when grown in the same conditions as specified in (b). PKA activity

was normalized by total protein extract concentration (c). Standard deviations represent the average of three biological

replicates (depicted in orange), with �p-value<0.05, ��p-value<0.001, ���p-value<0.0001 in a two-way ANOVA multiple

comparison test.

https://doi.org/10.1371/journal.pgen.1008996.g002
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these strains have single copies of CreA-GFP integrated at the creA locus and under the control

of the native promoter. Strains were grown in MM supplemented with xylan, a complex poly-

saccharide shown to cause exclusion of CreA-GFP from the nucleus; and after the addition of

glucose, which results in CCR and CreA-GFP localization to the nucleus [7] (Fig 3A). In CC-

de-repressing conditions (xylan), 29, 40, 15 and 19% of all counted nuclei of the WT, Δste7,

ΔmpkB and ΔpbsA strains respectively, contained CreA-GFP. The addition of glucose caused

an accumulation of CreA-GFP in the nuclei of the WT and ΔmpkB strains (~100%), whereas

CreA-GFP nuclear localization was significantly reduced in the Δste7 (~69%) and ΔpbsA
(~35%) strains (Fig 3B). These results indicate that the protein kinases Ste7 and PbsA, but not

MpkB, are important for CreA cellular localization under CCR condition.

To further support the microscopy studies and to gain understanding of the CreA-GFP pro-

tein dynamics, we carried out Western blots of immunoprecipitated CreA-GFP in the different

protein kinase deletion strains. We also included the ΔpkaA strain, as the PKA pathway was

shown to be important for CCR [15]. Similarly to a previous study [31], full length CreA-GFP

protein levels (about 76 kDa, indicated by an arrow in Fig 4A) are reduced in the presence of

xylose (CC-de-repression) in the WT strain, whereas the addition of glucose (CCR) caused an

increase in CreA-GFP protein levels (Fig 4A). CreA-GFP accumulation followed a similar pat-

tern as the WT strain in the Δste7 strain with a faint amount of protein being present in CC-

de-repressing conditions (Fig 4A). In contrast, the ΔmpkB strain showed high levels of

CreA-GFP protein in all conditions whereas no CreA-GFP was detected in the ΔpbsA and

ΔpkaA strains (Fig 4A). These results suggest that the HOG MAPKs MpkB and PbsA as well as

PKA are pivotal for the regulation of CreA-GFP protein turnover (Fig 4A). In summary, pro-

tein localization and dynamics studies suggest that Ste7 is important for CreA-GFP localiza-

tion in CC-repressing conditions but not for CreA-GFP protein synthesis; MpkB is not

required for CreA-GFP cellular localization under repressing conditions but crucial for

CreA-GFP degradation in CC-de-repressing conditions; PbsA is pivotal for CreA-GFP cellular

localization and synthesis in all conditions and PKA is also crucial for CreA-GFP synthesis in

both conditions.

In T. reesei and N. crassa, the absence of the respective SakA homologues resulted in an

increase in cellulase and xylanase production [22–24,49], suggesting that the HOG pathway is

not only involved in CCR but also in the regulation of hydrolytic enzyme production. We

therefore determined xylanase activity in the supernatants of the A. nidulans protein kinase

deletion strains in both CC-de-repressing (xylose) conditions and CC-repressing (glucose and

xylose). In the presence of CCR conditions, xylanase activity was significantly reduced in the

Δste7 and ΔmpkB strains and highly induced in the ΔpbsA strain, especially after 48 h and 72 h

(Fig 4B). Similarly, xylanase activity was significantly reduced in the ΔmpkB strain and Δste7
strain in the time point 72 h and induced in the ΔpbsA strain in the presence of xylose, whereas

enzyme activity was not significantly different for the Δste7 strain in this condition (Fig 4B).

In addition, we determined alcohol dehydrogenase activity (ADH) in the protein kinase

deletion strains, as the utilization of simpler alternative carbon sources, such as ethanol was

also shown to be subject to control by CCR [5]. As expected, ADH activity was repressed in

the presence of glucose whereas alcohol alone resulted in significantly higher ADH activity in

the WT strain (Fig 4C). The same pattern of ADH activity was observed in the Δste7 and

ΔmpkB strains, although enzyme activity was significantly higher in the Δste7 strain and signif-

icantly reduced in the ΔmpkB strain in the presence of ethanol (Fig 4C). In contrast, ADH

activity remained high in the ΔpbsA strain in the control condition and in the presence of

glucose.

In summary, these results suggest that MpkB is involved indirectly in CreA protein degra-

dation, resulting in enzyme activities that are significantly reduced in the ΔmpkB strain, likely
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due to the presence of CreA in CC-de-repressing conditions. In contrast, PbsA is required for

CreA protein biosynthesis under CCR condition, resulting in enzyme activities that are highly

induced in the ΔpbsA strain, likely due to the absence of CreA in both CC-de-repressing and

CCR conditions. Furthermore, it is possible that PbsA regulates CreA-GFP protein biosynthe-

sis via the PKA pathway. Ste7 regulation of CreA and enzyme production is more complex,

suggesting that Ste7 regulates different pathways.

Identification of Ste7, MpkB and PbsA protein interaction partners and

phosphorylation sites

In order to decipher the regulatory roles and pathways of the MAPKs Ste7, MpkB and PbsA

during CCR and CC-de-repressing conditions, the corresponding interaction partners and/or

target proteins were identified in the presence of CC-de-repressing and CC-repressing condi-

tions. We therefore constructed C-terminal GFP-tagged Ste7, MpkB and PbsA strains in the

AGB551 background strain and used the same genetic construction to complement the corre-

sponding deletion strains. Deletion strains constructed using the AGB551 wild-type strain had

the same growth phenotype in the presence of 2DG and AA as the one observed for the A.

nidulans NPK deletion library (Fig 1A and 1B). The GFP-tagged and -complemented strains

showed identical growth to the wild-type strain in the presence of 2DG and AA, indicating

that they were functional (S3A Fig). Furthermore, we were also able to detect full length

Ste7-GFP, MpkB-GFP and PbsA-GFP by Western blot in total protein extracts of strains that

were grown in CC-de-repressing and CCR conditions (S3B Fig), confirming the biosynthesis

of the tagged proteins in A. nidulans.
To identify potential interaction and/or target proteins of Ste7, MpkB and PbsA in CC-de-

repressing and CC-repressing conditions, GFP-pulldown experiments were performed fol-

lowed by mass spectrometry (MS) analysis for protein identification (S1 Table). Total proteins

were extracted from strains grown in the aforementioned conditions, the GFP-tagged proteins

Ste7, MpkB and PbsA were immunoprecipitated and protein samples were digested with tryp-

sin. As a control for unspecific binding/enrichment, pull-downs were also performed with a

strain expressing free GFP. We considered proteins as putative interaction partners of the tar-

get proteins that were detected in all three biological replicates but not in the control carrying

free GFP.

When strains were grown in the presence of xylan, 80, 16 and 13 unique putative interac-

tion partners were identified for Ste7, MpkB and PbsA, respectively; whereas after the addition

of glucose, 54, 9 and 13 unique putative interaction partners were identified for Ste7, MpkB

and PbsA, respectively; with 8 and 5 proteins identified for all three protein kinases in the pres-

ence of xylan and glucose, respectively (Fig 5A). These results suggest that these MAPKs could

form part of a protein complex. We then focused on Ste7, MpkB and PbsA interaction partners

that are predicted to be involved in MAPK pathways (Fig 5B). Based on these results (Fig 5B),

Ste7, MpkB and PbsA are predicted to form various intermediary and/or transient protein

complexes. These complexes consist of MpkB, Ste7, and MsgA in the MpkB-GFP pull-down

assay and of PbsA, SskB, and GskA when considering the PbsA-GFP pull-down assay in the

presence of xylan. Finally, the Ste7-GFP immunoprecipitation assay shows possible formation

Fig 3. Mitogen-activated protein kinases (MAPKs) are important for CreA cellular localization. Microscopy pictures of wild-type (WT) hyphae, taken

after 16 h growth at 22˚C in xylan minimal medium (MM) and after the addition of glucose for 30 min, show localization of CreA-GFP to the nucleus.

Pictures were taken at different wavelengths (DIC = differential interference contrast, Hoechst = Hoechst 33258 nucleic acid stain and GFP = green

fluorescent protein), scale bar showed on the bottom (a). Percentage of CreA-GFP nuclear localization in different strains. Strains were grown as specified in

(a) before nuclei with and without GFP were counted for 100 hyphal germlings for each condition and the % of CreA-GFP localization was calculated.

Hyphae were stained with Hoechst 33258 in order to confirm GFP nuclear localization (b).

https://doi.org/10.1371/journal.pgen.1008996.g003
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of a large complex consisting of NikA, Ste7, MpkB, MsgA, SteC, SteD, SskB, SskA, FphA,

MpkA, SakA, PbsA and GskA in the presence of xylan (Fig 5B). Upon the addition of glucose,

the composition of these complexes changes, with only one protein interaction partner being

different in the MpkB-GFP and PbsA-GFP pull-down assays when compared to the xylan con-

dition (Fig 5B). In contrast, dissociation of the large protein complex identified during the

Ste7-GFP pull-down assay is predicted to occur in the presence of glucose. Dissociation led to

the formation of smaller complexes: a) the first is composed of NikA, Hk8, Ste7, MpkB, SteC,

SteD, HamE and MsgA; b) the second comprises MpkB, Ste7, MsgA, and HamE; and c) the

third complex is composed by Ste7, GskA, and PbsA (Fig 5B). In addition, the number of frag-

ment spectra (independent scans) identified on Ste7, indicates increased phosphorylation in

de-repressing conditions, whereas increased phosphorylation on PbsA was observed in condi-

tions of CCR (Fig 5C). No difference in phosphorylation was observed for MpkB. When ana-

lyzing PbsA, putative phosphorylation sites are located within two regions, with one region

being localized outside the HOG1-binding domain (HBD) and the kinase domain, and the

other region being within the HBD (Fig 5D). Two hot spots for PbsA phosphorylation were

observed and these may play a role in regulation. Phospho-site prediction shows that all phos-

pho-sites identified on PbsA by MS are predicted to be targeted by glycogen synthase kinase A

(GskA) (Fig 5D).

GskA is important for SakA phosphorylation, PKA and xylanase activities

Of particular interest was the identification of GskA as a PbsA interaction partner in the pres-

ence of CC-de-repressing and CC-repressing conditions in our MS data. Furthermore, we

identified several phosphorylation sites on PbsA using MS; in silico analysis of these sites pre-

dicts GskA to be the protein kinase which phosphorylates PbsA in these conditions. To further

determine and confirm the regulation of PbsA by GskA, we performed several experiments

with the GskA inhibitor Gsk3β inhibitor VII (IgskA), as deletion of gskA results in a strain that

is severely growth compromised. Similar Gsk3 inhibitor compounds have already been shown

as inhibiting A. nidulans growth [50]. First of all, the minimal inhibitory concentration (MIC)

of IgskA was determined. In the presence of 30 μM IgskA, growth of all strains was inhibited

except for the Δste7 strain, which was resistant (Fig 6A). Furthermore, the three deletion

strains were significantly more sensitive to 10 μM IgskA than when compared to the WT strain

(Fig 6A) and we used this sub-inhibitory concentration for further experiments.

We showed that PbsA is important for the regulation of SakA phosphorylation (Fig 2B),

PKA activity (Fig 2C) and xylanase production (Fig 4B) in A. nidulans and in A. fumigatus,

Fig 4. Mitogen-activated protein kinases (MAPK) are important for CreA protein turnover and enzyme

production. The protein kinases are crucial for CreA-GFP protein turnover. The WT, Δste7, ΔmpkB, ΔpbsA and

ΔpkaA strains were grown in minimal medium (MM) supplemented with 1% xylose (CC-de-repressing condition) for

24 h before 2% glucose (CCR) was added for 30 min and total cellular proteins were extracted. The GFP tagged

proteins were pulled-down using GFP-trap beads and further analyzed by Western blot. The red arrow indicates full

length CreA-GFP (76 KDa) and the bottom panel shows a Western blot where an antibody against β-actin was used in

total cellular protein extracts that were used as input for immunoprecipitation. CreA-GFP/β-actin ratios were

calculated using densitometric scans of full length CreA-GFP (a). Xylanase activity is impaired in the protein kinase

deletion strains. The WT, Δste7, ΔmpkB and ΔpbsA strains were grown in MM supplemented with fructose (control)

for 24 h before mycelia were transferred to a carbon catabolite (CC)-repressing condition (MM + 2% Glucose + 1%

xylose) or CC-de-repressing condition (MM + 1% xylose) for 24, 48 and 72 h. Xylanase activity was measured in

culture supernatants and normalized by dry weight (b). Alcohol dehydrogenase (ADH) activity is impaired in the

protein kinase deletion strains. Strains were grown as described in (b) except that xylose was replaced by ethanol and

incubation time was 2 h. ADH activity was measured in mycelial protein extracts and normalized by total intracellular

protein (c). Standard deviations (b and c) represent the average of three biological replicates (shown as orange

symbols) with �p<0.05, ��p<0.01 and ���p<0.001 in a two-way ANOVA multiple comparison test.

https://doi.org/10.1371/journal.pgen.1008996.g004
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PKA activity is regulated by SakA in osmotic stress conditions [28]. To further confirm the

role of GskA in PbsA regulation, we measured PKA activity in the WT as well as in WT cul-

tures treated with the GSK inhibitor. Addition of the GSK inhibitor resulted in significantly

higher PKA activity in CC-repressing conditions only (Fig 6B). To further determine a role of

Fig 5. Identification of mitogen-activated protein kinase (MAPK) protein interactions and phosphorylation sites. Venn diagram depicting the number of proteins,

identified by mass spectrometry (MS), that potentially interact with Ste7-GFP, MpkB-GFP and PbsA-GFP in the presence of xylan or xylan and glucose.

Immunoprecipitation assays were carried out for the Ste7-GFP, MpkB-GFP and PbsA-GFP strains and samples were analyzed by MS/MS. (a). Table summarizing the

interaction of Ste7-GFP, MpkB-GFP and PbsA-GFP with proteins that are predicted to participate in MAPK pathways in the presence of xylan or xylan and glucose.

Crosses indicate a putative interaction whereas the absence of a cross signifies that the protein was not identified by MS (b). Phosphorylation sites on Ste7, MpkB and

PbsA identified by phospho-proteomics in the presence of CC-de-repressing (red, xylan) and CC-repressing (blue, xylan+glucose) conditions. Identified

phosphorylation sites had a statistical analysis for a putative modification higher than 80% (ptmRS> 80%), single phosphorylation sites in peptides are shown in red

and the quantification by number of identified scans (c). Phosphorylation sites on PbsA (1-651aa), HOG1-binding domain (HBD, 53-264aa) and kinase domain (268-

560aa), P shows the regions of phosphorylation on PbsA, bottom shows the prediction of GSK3 phospho-site on PbsA (d).

https://doi.org/10.1371/journal.pgen.1008996.g005
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GSK inhibition in CCR, xylanase activity was measured in culture supernatants of the WT

strain in the absence and presence of IgskA, when grown for 24 h in the control condition and

after transfer to CC-de-repressing and CC-repressing conditions for 24 h, 48 h and 72 h (Fig

6C). Addition of IgskA significantly reduced xylanase activity in culture supernatants in CC-

de-repressing conditions, suggesting that GSK activity is important for enzyme production

(Fig 6C). Xylanase activities were normalized by fungal dry weight, which was not significantly

different in the presence of the GSK inhibitor (Fig 6D), suggesting that the concentration of

IgskA did not affect fungal growth after pre-growth in control condition. These results are in

contrast to the results on PKA and xylanase activities obtained for the ΔpbsA (Fig 2C) strain,

and suggest that either GSK-mediated regulation of PbsA does not mimic a deletion pheno-

type for enzyme activity, or that GSK is important for enzyme activity either through direct

Fig 6. Glycogen synthase kinase (GskA) is important for protein kinase A (PKA) and xylanase activities. The GSK3β inhibitor VII inhibited growth of all

strains at 30 μM. The WT, Δste7, ΔmpkB and ΔpbsA strains were grown in biological triplicates in 96-well plates for 48 h in glucose minimal medium (MM)

supplemented with increasing concentrations of the GSK3β inhibitor VII before O.D.600nm (optical density) was measured and the percentage of growth was

calculated as a reference to the control, drug-free condition (a). PKA activity is increased in the presence of the GSK3β inhibitor VII. Strains were grown in

xylose MM for 24 h before mycelia were transferred to ddH2O with or without 10 μM GSK3β inhibitor VII (lgskA) for 2 h. Subsequently mycelia were

transferred to xylose MM or xylose plus 2% glucose MM with or without lgskA for 30 min. PKA activity was measured in 10 μg of total extracted intracellular

protein (b). GSK inhibition reduces xylanase activity in the presence of xylose. Xylanase activity was measured in culture supernatants of strains grown for 24

in fructose MM (control) and mycelia were transferred to ddH2O with or without 10 μM GSK3β inhibitor VII (lgskA) for 2 h. Subsequently mycelia were

transfer to MM supplemented with glucose and xylose or xylose only in the presence of lgskA for 24, 48 and 72 h (c). Addition of the Gsk-3β inhibitor VII does

not impair fungal growth. Fungal dry weight of strains grown in the same conditions as specified in c (d). Standard deviations represent the average of three

biological replicates (shown as orange symbols) with �p<0.05, ��p<0.01 and ���p<0.001 in a two-way ANOVA multiple comparison test.

https://doi.org/10.1371/journal.pgen.1008996.g006
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regulation or through controlling other protein kinases. In summary, these results suggest that

GskA is important for the regulation of PKA and xylanase activities in CC-de-repressing and

CC-repressing conditions.

The PbsA phosphorylation sites are important for osmotic stress

resistance, HOG pathway activation and enzyme activities

Next, we further determined the function of the two putative PbsA phosphorylation sites that

are predicted to be targeted by GskA (Fig 5D). A strain was constructed where PbsA serine 22

and serine 179 were mutated to alanine in order to mimic continued absence of phosphoryla-

tion. The PbsAS22A S179A strain was significantly more sensitive to sorbitol-induced osmotic

stress, as shown by a reduction in radial growth (Fig 7A), suggesting impairment in the HOG

pathway. Furthermore, the PbsAS22A S179A strain was significantly more sensitive to 2DG (Fig

7B) and resistant to AA (Fig 7C), which is the reverse phenotype than the one observed for the

ΔpbsA strain (Fig 1A and 1B) and suggests that these two sites are important for the regulatory

function of PbsA. Indeed, SakA phosphorylation, as determined by Western blot, was signifi-

cantly reduced in the PbsAS22A S179A strain when compared to the WT strain (Fig 7D), con-

firming an inactivation of the HOG pathway in these conditions. Next, we determined the

effect of GSK inhibition through the addition of lgskA on HOG pathway activation by per-

forming Western blot analysis of SakA phosphorylation in both CC-de-repressing and CC-

repressing conditions. Addition of IgskA resulted in the complete absence of SakA phosphory-

lation in all conditions, suggesting a putative interaction between GskA and the HOG pathway

(Fig 7D). In addition, both PKA (Fig 7E) and xylanase (Fig 7F) activities were significantly

reduced in the PbsAS22A S179A strain in both CC-de-repressing and CC-repressing conditions.

These findings are in line with the aforementioned GskA inhibition studies and suggest serines

S22 and S179 as target sites of GskA in A. nidulans. In summary, we show that the PbsA phos-

phorylation sites are important for osmotic stress resistance, HOG pathway activation and

activities of enzymes that respond to carbon source sensing and regulation.

Discussion

CCR is an extremely complex process that is subject to various regulatory pathways and

involves post-translational modifications, such as phosphorylation, on signaling pathways and

effector proteins in a variety of fungi [11,15,23,51]. In the present study, we screened a NPK

deletion library for defects in CCR, which led to the identification of several MAPK pathway-

associated protein kinases as important for CCR, and we selected Ste7, MpkB and PbsA for

further characterization.

We show that growth of the wild-type strain in the presence of alternative, non-glucose car-

bon sources activates the HOG MAPK pathway, decreases CreA protein levels and increases

xylanase and PKA activities; whereas the presence of glucose inactivates the HOG MAPK path-

way and increases CreA protein levels as well as significantly decreasing xylanase and PKA

activities (S4 Fig). In contrast, SakA was not phosphorylated, CreA was not observed in the

nucleus, CreA protein levels were not detected and enzyme activities were highly increased in

both CC-de-repressing and CCR conditions in the ΔpbsA strain (S4 Fig). These results suggest

that PbsA is crucial for the stability and/or the biosynthesis of CreA protein levels under CCR

conditions, and reinforce that PbsA-mediated phosphorylation of SakA is required for the reg-

ulation of CCR. In CC-de-repressing conditions, SakA is phosphorylated and SakA-GFP is

predominantly nuclear; whereas the addition of glucose causes a reduction in SakA phosphor-

ylation and translocation to the cytoplasm, suggesting a role for SakA in the utilization of non-

preferred carbon sources and de-repressing phenotype (S2B Fig). Mutation of the two PbsA
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serines 22 and 179 to alanines, predicted to be phosphorylated by GskA, and addition of the

GskA inhibitor lgskA, impaired SakA phosphorylation, resulting in a CC-repressing pheno-

type, further supporting a role for PbsA and SakA in CCR (S4 Fig).

In the Δste7 and ΔmpkB strains, SakA phosphorylation, CreA cellular localization and pro-

tein stability as well as PKA and xylanase activities were also impaired (S4 Fig), suggesting that

CC-de-repression requires activation of the HOG and PKA pathways at the same time. Ste7

and MpkB are part of the same MAPK pathway but HOG pathway activation, PKA activity

and defects in CCR differ between both deletion strains, suggesting that they control these pro-

cesses through different mechanisms. This is further substantiated through additional

Fig 7. The PbsA phosphorylation sites are important for osmotic stress resistance, HOG pathway activation and enzyme activities. The PbsAS22A S179A strain is

sensitive to sorbitol-induced osmotic stress. Strains were grown from 105 spores in glucose MM 0.3, 0.6, 0.9 and 1.2 M sorbitol for 5 days at 37˚C before colony radial

diameter was measured and the percentage of growth in comparison to the control (no sorbitol) condition was calculated. Also shown is a diagram that depicts the

localization of the PbsA double point mutations (HBD = Hog1 binding domain) (a). The PbsAS22A S179A strain is sensitive to 2-deoxyglucose (2DG) (b) and resistant to

allyl alcohol (AA) (c). Strains were grown and growth was calculated as specified in (a), except that xylose MM was used for the 2DG assays. SakA phosphorylation is

significantly reduced in the presence of 10 μM of the Gsk-3β inhibitor VII (l10gskA) and in the PbsAS22A S179A strain. SakA phosphorylation was determined by Western

blot, using an anti-P-p38 antibody, in total cellular protein extracts of strains grown for 24 h in xylose MM and after the addition of glucose for 30 min. Treatment of

WT cultures with the Gsk-3β inhibitor VII was carried out as described in Fig 5 and SakA phosphorylation levels were normalized by the anti-β-actin antibody, with the

bottom panel indicating the P-p38/actin ratio (d). PKA (e) activity and extracellular xylanase (f) activities were reduced in the PbsAS22A S179A strain. PKA activity was

measured in total cellular protein extracts of strains grown in the same conditions as specified in Fig 2 (e). Xylanase activity was measured in culture supernatants of

strains grown for 24 h in fructose MM (control) and after transfer to glucose and xylose (G+X) or xylose (X) MM for 24 h, 48 h and 72 h (f). Standard deviations

represent the average of three biological replicates (shown as orange symbols) with �p<0.05, ��p<0.01 and ���p<0.001 in a two-way ANOVA multiple comparison test.

https://doi.org/10.1371/journal.pgen.1008996.g007
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predicted interactions with other protein kinases, such as SnfA (Fig 2A), which has been

shown to be crucial for CCR and CreA localization [1].

In addition, the PKA signaling pathway is also important for CCR and potentially interacts

with the HOG pathway. In both the ΔpbsA and ΔpkaA strains, CreA protein levels could not

be detected, although microscopy shows GFP fluorescence in the nucleus in both strains. This

discrepancy may be explained by residual CreA-GFP degradation products still being present

in the nucleus (Fig 4A). Regulation of CreA by the HOG and PKA pathways could either

occur in parallel, or PkaA and SakA interact, suggesting cross-talk between both pathways. In

A. fumigatus, SakA and PkaC1 were shown to physically interact in osmotic stress conditions

[28]. In A. nidulans, deletion of pbsA results in very low levels of SakA phosphorylation and

PKA activity in CC-de-repressing and CC-repressing conditions, suggesting that like in A.

fumigatus, cross-talk between the HOG and PKA pathways exist in A. nidulans. Furthermore,

we cannot exclude additional regulatory mechanisms acting on PKA signaling, exerted by Ste7

and MpkB, and which could occur either through the HOG pathway or through another,

uncharacterized signaling route. Nevertheless, the aforementioned results are strong evidence

that support cross-talk between the HOG, PKA and CCR pathways and highlight the complex-

ity of signaling input required for carbon source utilization.

In order to gain mechanistic insights into Ste7, MpkB and PbsA-mediated regulation of

CCR, MS was carried out to identify interaction partners. Furthermore, phospho-proteomic

analyses identified potential phosphorylation sites on two MAPKs. Of particular interest was

the identification of GskA as an interaction partner for PbsA in all conditions, as well as indi-

cation of phosphorylation events on PbsA, that are predicted (NetPhos3.1) [52,53] to be cata-

lyzed by GskA. A previous study showed that GskA interacts with CreA in the presence of

xylan, whereas upon the addition of glucose, this interaction is lost, with CreA moving to the

nucleus with the co-repressors SsnF and RcoA, and GskA remaining cytoplasmic [7]. Pharma-

cological inhibition of GskA, resulted in significantly reduced xylanase activity (Fig 6C) and

the absence of phosphorylated SakA (Fig 7D), further supporting an interaction between

GskA and the HOG pathway. Similar results were obtained for PbsAS22A S179A mutant, sug-

gesting that GskA is the protein kinase that targets these sites. In S. cerevisiae, the Pbs2p

Hog1-binding domain (HBD) region, that is required for Pbs2p binding to Hog1p, is located

between amino acids 136–245 [54]. It is tempting to suggest a similar role for serine 179 of A.

nidulans PbsA (Fig 7A), especially as the PbsAS22A S179A strain had reduced SakA phosphoryla-

tion levels (Fig 7D) and increased sensitivity to osmotic stress (Fig 7A), thus suggesting that

the phosphomutations impact PbsA function. Alternatively, as mutation of the two PbsA phos-

phorylation sites had an effect on PKA activity (Fig 7E), this could be responsible for the

observed phenotypes. On the other hand, PKA activity was affected by GSK inhibition in CC-

repressing conditions, although SakA phosphorylation was almost undetectable in the pres-

ence of the GSK inhibitor and PbsAS22A S179A strain, suggesting that additional pathways exist

to regulate PKA enzyme activity.

Based on the aforementioned results, our MS analysis and previous studies [7,11,15], we

propose a model for the interaction between the different signaling pathways that ultimately

control CCR (Fig 8). In the presence of the alternative carbon source xylan, formation of tran-

sient protein complexes is observed that change upon the addition of glucose. Notably, the

Ste7-GFP pull-down assay identified the proteins NikA, Ste7, SteC, SteD, MsgA, MpkB, SskA,

SskB, FphA, MpkA, GskA, PbsA and SakA as forming a complex, with Ste7 and SakA being

phosphorylated, resulting in PKA pathway activation which is required for CreA nuclear local-

ization. Additional signals are also predicted to keep CreA from entering the nucleus, with

SakA possibly involved in this process, and which together control a dynamic cytoplasm/

nucleus shuttling of CreA under CC-de-repressing conditions (Fig 8A). NikA is a histidine
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kinase that is part of a two-component signal transduction phospho-relay system [55,56],

which together with the phytochrome photoreceptor FphA could trigger a MAPK phosphory-

lation cascade that ultimately results in SakA phosphorylation in these conditions. Indeed,

FphA has previously been shown to cause SakA phosphorylation upon the sensing of light

[45,57]. HOG MAPK pathway activation via SakA phosphorylation in the presence of CC-de-

repressing conditions may therefore be mediated by a two-component system, as previously

described for other signaling pathways [55].

Upon the addition of glucose, the HOG activation complex dissociates into smaller protein

complexes: i) the first is composed of NikA, Hk8, Ste7, MpkB, SteC, SteD, HamE and the phos-

phatase MsgA, with Ste7 residues not being phosphorylated; as well as ii) additional transient

protein interactions such as the complex composed of GskA, PbsA and SakA (Fig 8B), result-

ing in a decrease in SakA phosphorylation and reduced PKA pathway activation. It is tempting

to speculate that MsgA may be responsible for Ste7 de-phosphorylation, subsequent protein

complex dissociation and inactivation of the HOG pathway, as well as implementation of

CCR. Indeed, the ΔmsgA strain was not able to grow in the presence of glucose as sole carbon

source [58], although future studies are required to determine the role of this phosphatase in

CCR. Together these signals then promote CreA repressor complex translocation to the

Fig 8. Diagram depicting a potential interaction of mitogen-activated protein kinase (MAPK) and protein kinase A (PKA) pathways in the regulation of CreA in

carbon catabolite de-repressing (xylan) and repressing (xylan and glucose) conditions. In the presence of xylan, transient complexes are formed including a large

protein complex that was observed in Ste7-GFP pull-down assay. The large complex consists of the NikA, Ste7, SteC, SteD, MsgA, MpkB, SskA, SskB, FphA, MpkA,

GskA, PbsA and SakA proteins, resulting in SakA phosphorylation and HOG (high osmolarity glycerol) pathway activation. Phosphorylated SakA is mainly nuclear.

SakA phosphorylation may occur i) either through the phytochrome photoreceptor FphA which activates the SskA-SskB-PbsA signaling cascade and/or ii) through the

histidine-specific protein kinase NikA which relays a signal to SteC-SteD, resulting in PbsA-mediated activation of SakA. In addition, this complex regulates and

increases PKA activity which in turn controls cellular localization of the CreA repressor complex. In the presence of xylan, the CreA-repressor complex has low levels

and it is mainly cytoplasmic with a small percentage also observed in the nucleus. CreA-repressor complex localization is therefore regulated by the HOG and PKA

pathways as well as additional, unknown signals in CC-de-repressing conditions which cause its nuclear exclusion and degradation (a). Upon the addition of glucose,

the MAPK dissociates into smaller protein complexes, likely resulting in SakA de-phosphorylation and HOG pathway inactivation. Complex dissociation may be caused

by i) either Ste7 de-phosphorylation by the phosphatase MsgA and/or ii) phosphorylation of PbsA by the glycogen kinase synthase GskA, resulting in a weakening of

PbsA-SakA interaction. Inactivation of PbsA and subsequent decrease in SakA phosphorylation results in decreased PKA activity and constitutes a signal for CreA

repressor-complex translocation to the nucleus and repression of target genes such as those encoding xylanases (b). Protein names are indicated in each shape; xylan is

represented by polymers in purple and red and glucose by blue hexagons; P in orange squares represent phosphorylation events; arrows show the direction of

phosphorylation with solid arrows representing direct phosphorylation and dashed arrows representing indirect phosphorylation and/or regulation. Membrane lipid

bilayer and cytoplasm are depicted in light brown and nuclei are shown in light blue.

https://doi.org/10.1371/journal.pgen.1008996.g008
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nucleus where it can repress target genes (Fig 8B). In the presence of xylan, immunoprecipita-

tion (IP) of Ste7-GFP identified PbsA as an interaction partner, but when IP of PbsA-GFP was

carried out, Ste7 was not identified (Fig 5B). Similarly, in the presence of glucose, PbsA was

not identified as an interaction partner of Ste7-GFP, whereas IP of PbsA-GFP identified Ste7

as an interaction partner. This discrepancy may be explained by the interaction dynamics

where Ste7 and PbsA interaction is weak and/or transient in both conditions, in addition to

the formation of two protein complexes in the presence of glucose which also favors a dissocia-

tion between Ste7 and PbsA.

In summary, this study unravels part of the extremely complex mechanism that underlies

the regulation of preferred and alternative carbon source utilization in a reference filamentous

fungus, and highlights the interaction that takes place between protein kinases of several very

different signaling pathways.

Methods

Strains and culture conditions

The A. nidulans non-essential protein kinase (NPK) deletion library was kindly provided by

Dr. Osmani[30,59]. Briefly, NPK-encoding genes were deleted in the A. nidulans SO451

(pyrG89; wA3; argB2; ΔnkuAku70::argB pyroA4; sE15 nirA14 chaA1 fwA1) background

strain by replacing the target gene with the A. fumigatus pyrG marker gene. All strains were

grown at 37˚C, except for experiments with allyl alcohol, which were performed at 30˚C.

Strains were grown in either liquid (without agar) or solid (with 20 g/l agar) complete

medium (CM) or minimal medium (MM) as described previously [15]. The strains that

were used for Western blot analyses, enzyme activity assays, mass spectrometry and micros-

copy and point mutations were constructed in the A. nidulans AGB551 background strain

as described previously [7]. The strain harboring a double point mutation in pbsA, where

serines 22 and 179 were mutated to an alanine, was constructed by replacing the endoge-

nous gene by the respective pbsAS22A S179A-gfp cassette. gDNA from the PbsA-GFP (5’UTR-

pbsA-gfp-AfpyrG-3’UTR) strain was used as a template for subsequent PCR amplifications.

The following three fragments were generated: a) 5’UTR-pbsA (partial sequence until the

first point mutation), b) pbsA fragment carrying the two mutations S22A S179A (using

primers containing the mutations and 20 bp flanking sequence) and c) pbsA (partial

sequence after the second point mutation)-gfp-AfpyrG-3’UTR. The three fragments were

recombined into one cassette using plasmid pRS426 and transformed into Saccharomyces
cerevisiae strain SC9721 (MATα his3-Δ200 URA3-52 leu2Δ1 lys2Δ202 trp1Δ63) obtained

from the Fungal Genetic Stock Center (FGSC). All plasmids were cloned into bacteria

before full cassettes were amplified by PCR from extracted bacterial plasmid DNA (Qiagen

Plasmid miniprep) and used for transformation in Aspergillus nidulans as previously

described. The presence of the pbsA double point mutation was confirmed by DNA

sequencing. To determine fungal biomass dry weight, strains were grown in liquid MM for

the specified time points, before mycelia were harvested by vacuum filtration, freeze-dried

and weighed. All experiments were carried out in biological triplicates unless otherwise

specified. Strains used in this study are listed in S2 Table.

Screening of the NPK deletion library for growth in the presence of

2-deoxyglucose (2DG) and allyl alcohol (AA)

Strains were grown from 107 spores in MM supplemented with xylose and increasing concen-

trations of 2DG, or MM supplemented with glucose and increasing concentrations of AA for
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48 h in 96-well plates. Plates were inspected visually for strains that had increased or decreased

growth in any of the two compounds. 2DG and AA sensitivity/resistance of selected strains

was confirmed by measuring colony radial diameter when grown from 105 spores for 5 days

on plates containing the aforementioned MM and 2DG/AA combinations.

Detection of glucose in the supernatant

Strains were grown from 107 conidia in 30 mL CM for 24 h before mycelia were washed twice

with ddH2O and transferred to MM supplemented with 1% glucose. Supernatant samples

were collected at the specified time points and glucose concentrations were measured using

the Glucose GOD-PAP Liquid Stable Mono-reagent kit (LaborLab Laboratories Ltd. Guarul-

hos, São Paulo, Brazil) according to manufacturer’s instructions. The percentage of residual

glucose in the supernatants at different times was calculated with reference to time point 0.

Microscopy

Strains were grown for 16 h at 22˚C in 5 ml MM supplemented with 1% w/v xylan in small

petri dishes containing a cover slip before glucose was added to a final concentration of 2% v/v

and samples were incubated an additional 30 min. Cover slips containing the attached hyphal

germlings were viewed under a Carl Zeiss (Jena, Germany) AxioObserver.Z1 fluorescent

microscope using the 100x magnification oil immersion objective (EC Plan-Neofluar, NA 1.3).

Differential interference contrast (DIC) and fluorescent images were taken and processed, and

the percentage of nuclear CreA-GFP was calculated as described before [31].

Protein kinase A (PKA) activity

Total cellular protein extraction and PKA activity was measured in 10 μg of total protein lysate

using the Pep-Tag assay for non-radioactive detection of cAMP-dependent protein kinase kit

(Promega), according to the manufacturer’s instructions. The PKA phosphorylated substrate

in samples was quantified by densitometry quantification using ImageJ and compared to the

positive control (purified PKA catalytic subunit protein, 100% activity).

Xylanase activity

Xylanase (endo-1,4-β-xylanase) activities were measured in culture supernatants using Azo-

Xylan (Birch-wood, Megazyme) according to manufacturer’s instructions.

Alcohol dehydrogenase (ADH) activity

Total cellular protein extracts from mycelia grown in the specified conditions were obtained

by re-suspending ground mycelia in 1 ml B250 buffer (250 mM NaCl, 100 mM Tris-HCl pH

7.5, 10% glycerol, 1 mM EDTA and 0.1% NP-40) supplemented with 1.5 ml/L of 1 M DTT, 1

pill/10mL of the Complete-mini Protease Inhibitor Cocktail EDTA-free (Roche), 3 ml/L of 0.5

M Benzamidine, 1 pill/10mL of phosphoSTOP phosphatase inhibitors and 10 ml/L of 100 mM

PMSF and subsequent centrifugation for 10 min at 4˚C, 13,200 rpm. ADH activity was mea-

sured in 10 μg of total intracellular protein lysate in a 96-well plate. Protein samples were re-

suspended in reaction buffer (50 mM sodium pyrophosphate decahydrate, 50 μM semicarba-

zide hydrochloride and 20 mM glycine in pH 8.0), 6 mM NAD+ and water to a final volume of

200 μL/well. Absorbance was read at 340 nm for 15 min at 37˚C, with readings at every minute,

using the Synergy HTX (BioTek) plate reader. Enzyme activity was calculated using the linear

part of the slope and expressed as mU x mL x mg protein.
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Protein extraction and Western blot

Protein extractions were performed as described above and Western blots were carried out as

described previously [7].

GFP immunoprecipitation (IP) assays

Total cellular proteins were extracted as described above and supernatants were transferred to

a new e-cup Eppendorf and kept on ice. Subsequently, 20 uL/sample of GFP-trap beads (Chro-

motek) were equilibrated in 0.5 mL B250 lysis buffer for 10 min on ice and beads were col-

lected by centrifugation at 3,000 rpm for 5 min. Beads were then incubated with 6 mg of total

protein lysate at 4˚C for 3 h before samples were centrifuged and supernatants were discarded.

The GFP-trap beads were washed twice using 1 mL B250 lysis buffer without DTT and one

additional wash step was done with B250 lysis buffer containing DTT. GFP-trap beads were

collected by centrifugation and supernatants were removed.

Mass spectrometry analysis with nanoLC-nanoESI-MS/MS2

Nano LC- RSLCnano Ultimate 3000 system (Thermo Scientific): Peptides of 3 μl sample solu-

tion were loaded and washed on an Acclaim PepMap 100 column (75 μm x 2 cm, C18, 3 μm,

100 Å, Thermo Scientific) at a flow rate of 25 μl/min for 6 min in 100% solvent A (98% water,

2% acetonitrile, 0.07% TFA). Analytical peptide separation by reverse phase chromatography

was performed on an Acclaim PepMap RSLC column (75 μm x 25 cm, C18, 3 μm, 100 Å,

Thermo Scientific) typically running a gradient from 98% solvent A (water, 0.1% formic acid)

and 2% solvent B (80% acetonitrile, 20% water, 0.1% formic acid) to 42% solvent B within 95

min and to 65% solvent B within the next 26 min at a flow rate of 300 nl/min (solvents and

acids from Fisher Chemicals).

Nano ESI mass spectrometry—Orbitrap Velos Pro (Thermo Scientific): Chromatographi-

cally eluting peptides were on-line ionized by nano-electrospray (nESI) using the Nanospray

Flex Ion Source (Thermo Scientific) at 2.4 kV and continuously transferred into the mass spec-

trometer. Full scans within the mass range of 300–1850 m/z were taken from the Orbitrap-FT

analyzer at a resolution of 30.000 with parallel data-dependent top 15 MS2-fragmentation with

the LTQ Velos Pro linear ion trap (CID). LCMS method programming and data acquisition

were performed with the software XCalibur 2.2 (Thermo Fisher). The precursor mass toler-

ance was 10 ppm while the fragment tolerance was 0.6 Da. The experiments had full trypsin

enzyme specificity with 2 as a maximum missed cleavage sites, the FDR target value was 0.01

PSMs.

MS/MS2 data processing for protein analysis and identification was done with the Prote-

ome Discoverer 2.2 (PD, Thermo Scientific) software using the SequestHT and Mascot peptide

analysis algorithm(s) and organism-specific taxon-defined protein databases extended by the

most common contaminants. We have used the AspGD (Aspergillus Genome Database) to

obtain functional annotations, which consist of 29873 entries for the A. nidulans FGSC A4

genome. STY phosphorylation was considered as a variable modification, and phospoRS was

used to calculate site probabilities with a cut off value of 0.8 [60].

Experiments were performed in triplicates for each time point and proteins with at least

two unique peptides identified in each replicate were further considered. Proteins identified in

the GFP-only control (AGB551 as genetic background strain over-expressing free GFP con-

trolled by GPDH promoter) were discarded for further considerations as putative interaction

partners.
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Minimal inhibitory concentration (MIC)

The MIC of the GSK-3β inhibitor VII was determined by growing strains from 104 conidia for

48 h in 96-well plates containing 200 μL glucose MM/well and increasing concentrations of

the GSK (glycogen synthase kinase) inhibitor. Next, optical density (O.D.) was read at 600 nm

and the percentage of growth calculated with reference to the control, drug-free condition

(considered 100% growth).

Statistical analysis

All statistical analyses were carried out in Prism GraphPad. Statistical analysis was performed

for all three biological replicates using a two-way ANOVA multiple comparisons test or a one-

tail t-test with statistical significance of �p<0.05, ��p<0.01 and ���p<0.001, comparing every-

thing to the wild-type strain in the same condition.

Supporting information

S1 Fig. MAPK deletion strains are sensitive to the oxidative stress-inducing compound

acrolein. Heat map and values depicting average radial growth of three biological replicates of

protein kinase deletion strains that were significantly sensitive or resistant to at least one con-

centration of acrolein. Strains were grown from 105 spores for 5 days at 37˚C before radial

diameter was measured. The results are expressed as percentage of growth in the presence of

acrolein when compared to the drug-free, control medium (defined as 100% growth for each

strain). Statistical analysis was performed using a one-tailed, paired t-test when compared to

the control condition (�, p< 0.01 and ��, p< 0.001).

(TIF)

S2 Fig. SakA cellular localization is carbon source-dependent. Microscopy pictures of

SakA-GFP hyphae, taken after 16 h growth at 22˚C in xylan minimal medium (MM) and after

the addition of glucose for 30 min, show localization in the nucleus. Pictures were taken at dif-

ferent wavelengths (DIC = differential interference contrast, GFP = green fluorescent protein,

Hoechst = Hoechst 33258 nucleic acid stain and merged) and scale bars are indicated (a). Per-

centage of SakA-GFP nuclear localization in different conditions. SakA-GFP was grown as

specified in (a) before nuclei with and without GFP were counted for 100 hyphal germlings for

each condition and the % of SakA-GFP localization was calculated. Hyphae were stained with

Hoechst 33258 in order to confirm GFP nuclear localization (b).

(TIF)

S3 Fig. GFP-tagged strains, that were constructed for mass spectrometry and phosphoryla-

tion site identification, are functional. The Δste7, ΔmpkB and ΔpbsA strains were comple-

mented with ste7-gfp, mpkB-gfp and pbsA-gfp respectively, and the same GFP-constructions

were transformed into the wild-type (WT) background strain. Strains were grown from 105

spores on xylose or glucose minimal medium (MM) supplemented with increasing concentra-

tions of 2-deoxy-glucose (2DG) and allyl alcohol (AA), respectively, for 5 days at 37˚C before

pictures were taken (a). The presence of full length GFP-tagged proteins was confirmed by

Western blot after 24 h growth in xylan (carbon catabolite de-repressing condition) MM and

after the addition of glucose (carbon catabolite repressing condition) for 30 min. Protein levels

were normalized by β-actin (GFP/β-actin ratios are indicated) (b).

(TIF)

S4 Fig. Summary of phenotypes for SakA phosphorylation, PKA and xylanase activities

observed for the mitogen-activated protein kinases (MAPKs). Heat map depicting SakA
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phosphorylation levels (P-p38/actin ratio), PKA activity (proportional arbitrary units), xyla-

nase activity (mU x mL x mg dry weight) in the WT, Δste7, ΔmpkB, ΔpbsA, IgskA and PbsAS22A

S179A strains in the presence of carbon catabolite (CC)-de-repressing and CC-repressing condi-

tions. Numbers represent the average of the results from at least three biological replicates and

the heat map color scale is also indicated. Also shown are representative images of the radial

growth for each strain in the presence of glucose minimal medium.

(TIF)

S1 Table. Identification of Ste7-GFP, MpkB-GFP and PbsA-GFP interaction partners by

mass spectrometry (MS). List of proteins identified by MS as interaction partners for

Ste7-GFP, MpkB-GFP and PbsA-GFP in carbon catabolite de-repressing (xylan) and repress-

ing (xylan and glucose) conditions. GFP-tagged proteins were immunoprecipitated with GFP-

trap beads in the aforementioned conditions, before being submitted to MS analysis.

(XLSX)

S2 Table. Strains used in this study.

(DOCX)
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60. Taus T, Köcher T, Pichler P, Paschke C, Schmidt A, Henrich C, et al. Universal and confident phosphor-

ylation site localization using phosphoRS. J Proteome Res. 2011; 10: 5354–5362. https://doi.org/10.

1021/pr200611n PMID: 22073976

PLOS GENETICS Mitogen-Activated Protein kinases regulate glucose catabolite repression in filamentous fungi

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008996 August 25, 2020 27 / 27

https://doi.org/10.1038/s41579-018-0109-x
http://www.ncbi.nlm.nih.gov/pubmed/30377305
https://doi.org/10.1534/g3.115.016667
http://www.ncbi.nlm.nih.gov/pubmed/25762568
https://doi.org/10.1128/EC.00346-08
http://www.ncbi.nlm.nih.gov/pubmed/19181872
https://doi.org/10.1021/pr200611n
https://doi.org/10.1021/pr200611n
http://www.ncbi.nlm.nih.gov/pubmed/22073976
https://doi.org/10.1371/journal.pgen.1008996

