8 research outputs found

    Systemic delivery of E6/7 siRNA using novel lipidic particles and its application with cisplatin in cervical cancer mouse models

    Get PDF
    Small interfering RNA (siRNA) shows great promise in cancer therapy, but its effectiveness in vivo still remains a crucial issue for its transition into the clinics. Although the successful use of polyethylene glycol (PEG)ylated lipidic delivery systems have already been reported, most of the formulation procedures used are labour intensive and also result in unstable end products. We have previously developed a simple yet efficient hydration-of-freeze-dried- matrix (HFDM) method to entrap siRNA within lipid particles, in which the products exhibited superior stability. Here, we show that these HFDM-formulated particles are stable in the presence of serum and can deliver siRNA efficiently to tumours after intravenous administration. Using these particles, around 50% knockdown of the target gene expression was observed in tumours. With the use of siRNA targeting the E6/7 oncogenes expressed in cervical cancer, we showed a 50% reduction in tumour size. This level of tumour growth suppression was comparable to that achieved from cisplatin at the clinically used dose. Overall, our results demonstrate the feasibility of using HFDM-formulated particles to systematically administer E6/7-targeted siRNA for cervical cancer treatment. The simplicity of preparation procedure along with superior product stability obtained from our method offers an innovative approach for the in vivo delivery of siRNA

    Inhibition of cervical cancer cell growth in vitro and in vivo with dual shRNAs

    Get PDF
    RNA interference (RNAi)-based gene silencing is widely used in laboratories for gene function studies and also holds a great promise for developing treatments for diseases. However, in vivo delivery of RNAi therapy remains a key issue. Lentiviral vectors have been employed for stable gene transfer and gene therapy and therefore are expected to deliver a stable and durable RNAi therapy. But this does not seem to be true in some disease models. Here, we showed that lentivirus delivered short-hairpin RNA (shRNA) against human papillomavirus (HPV) E6/E7 oncogenes were effective for only 2 weeks in a cervical cancer model. However, using this vector to carry two copies of the same shRNA or two shRNAs targeting at two different but closely related genes (HPV E6 and vascular endothelial growth factor) was more effective at silencing the gene targets and inhibiting cell or even tumor growth than their single shRNA counterparts. The cancer cells treated with dual shRNA were also more sensitive to chemotherapeutic drugs than single shRNA-treated cells. These results suggest that a multi-shRNA strategy may be a more attractive approach for developing an RNAi therapy for this cancer. Cancer Gene Therapy (2011) 18, 219-227; doi: 10.1038/cgt.2010.72; published online 19 November 201

    Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability

    No full text
    Accumulating evidence supports the concept that cancer stem cells (CSCs) are responsible for tumor initiation and maintenance. They are also considered as an attractive target for advanced cancer therapy. Using a sphere culture method that favors the growth of self-renewal cells, we have isolated sphere-forming cells (SFCs) from cervical cancer cell lines HeLa and SiHa. HeLa-SFCs were resistant to multiple chemotherapeutic drugs and were more tumorigenic, as evidenced by the growth of tumors following injection of immunodeficient mice with 1 × 10 cells, compared with 1 × 10 parental HeLa cells required to grow tumors of similar size in the same time frame. These cells showed an expression pattern of CD44 /CD24 that resembles the CSC surface biomarker of breast cancer. We further demonstrated that HeLa-SFCs expressed a higher level (6.9-fold) of the human papillomavirus oncogene E6, compared with that of parental HeLa cells. Gene silencing of E6 with a lentiviral-short-hairpin RNA (shRNA) profoundly inhibited HeLa-SFC sphere formation and cell growth. The inhibition of cell growth was even greater than that for sphere formation after E6 silence, suggesting that the loss of self-renewing ability may be more important. We then measured the expression of self-renewal genes, transformation growth factor-beta (TGF-Β) and leukemia-inhibitory factor (LIF), in shRNA-transduced HeLa-SFCs and found that expression of all three TGF-Β isoforms was significantly downregulated while LIF remained unchanged. Expression of the Ras gene (a downstream component of TGF-Β) was also markedly decreased, suggesting that the growth-inhibitory effect could be via the TGF-Β pathway. The above data indicate RNA interference-based therapy may offer a new approach for CSC-targeted cancer therapy

    Ruthenium oligonucleotides, targeting HPV16 E6 oncogene, inhibit the growth of cervical cancer cells under illumination by a mechanism involving p53

    Full text link
    High-risk Human Papillomaviruses (HPV) has been found to be associated with carcinomas of the cervix, penis, vulva/vagina, anus, mouth and oro-pharynx. As the main tumorigenic effects of the HPV have been attributed to the expression of E6 and E7 genes, different gene therapy approaches have been directed to block their expression such as antisense oligonucleotides (ASO), ribozymes and small interfering RNAs. In order to develop a gene-specific therapy for HPV-related cancers, we investigated a potential therapeutic strategy of gene silencing activated under illumination. Our aim according to this antisense therapy consisted in regulating the HPV16 E6 oncogene by using an E6-ASO derivatized with a polyazaaromatic ruthenium (Ru(II)) complex (E6-Ru-ASO) able, under visible illumination, to crosslink irreversibly the targeted sequence. We examined the effects of E6-Ru-ASO on the expression of E6 and on the cell growth of cervical cancer cells. We demonstrated using HPV16(+) SiHa cervical cancer cells that E6-Ru-ASO induces after illumination, a reactivation of p53, the most important target of E6, as well as the inhibition of cell proliferation with a selective repression of E6 at the protein level. These results suggest that E6-Ru ASOs, activated under illumination and specifically targeting E6, are capable of inhibiting HPV16(+) cervical cancer cell proliferation.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore